Embedding of a planar rational compactum into
a planar continuum with the same rim-type
Fundamenta Mathematicae, Tome 168 (2001) no. 2, pp. 113-118
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that every planar rational compactum with rim-type
$\le \alpha $, where $\alpha $ is a countable ordinal greater
than 0, can be topologically embedded into a planar rational
(locally connected) continuum with rim-type $\le \alpha $.
Keywords:
prove every planar rational compactum rim type alpha where alpha countable ordinal greater topologically embedded planar rational locally connected continuum rim type alpha
Affiliations des auteurs :
Sophia Zafiridou 1
@article{10_4064_fm168_2_2,
author = {Sophia Zafiridou},
title = {Embedding of a planar rational compactum into
a planar continuum with the same rim-type},
journal = {Fundamenta Mathematicae},
pages = {113--118},
publisher = {mathdoc},
volume = {168},
number = {2},
year = {2001},
doi = {10.4064/fm168-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-2/}
}
TY - JOUR AU - Sophia Zafiridou TI - Embedding of a planar rational compactum into a planar continuum with the same rim-type JO - Fundamenta Mathematicae PY - 2001 SP - 113 EP - 118 VL - 168 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-2/ DO - 10.4064/fm168-2-2 LA - en ID - 10_4064_fm168_2_2 ER -
%0 Journal Article %A Sophia Zafiridou %T Embedding of a planar rational compactum into a planar continuum with the same rim-type %J Fundamenta Mathematicae %D 2001 %P 113-118 %V 168 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-2/ %R 10.4064/fm168-2-2 %G en %F 10_4064_fm168_2_2
Sophia Zafiridou. Embedding of a planar rational compactum into a planar continuum with the same rim-type. Fundamenta Mathematicae, Tome 168 (2001) no. 2, pp. 113-118. doi: 10.4064/fm168-2-2
Cité par Sources :