Embedding of a planar rational compactum into a planar continuum with the same rim-type
Fundamenta Mathematicae, Tome 168 (2001) no. 2, pp. 113-118.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that every planar rational compactum with rim-type $\le \alpha $, where $\alpha $ is a countable ordinal greater than 0, can be topologically embedded into a planar rational (locally connected) continuum with rim-type $\le \alpha $.
DOI : 10.4064/fm168-2-2
Keywords: prove every planar rational compactum rim type alpha where alpha countable ordinal greater topologically embedded planar rational locally connected continuum rim type alpha

Sophia Zafiridou 1

1 Department of Mathematics University of Patras 26500 Patras, Greece
@article{10_4064_fm168_2_2,
     author = {Sophia Zafiridou},
     title = {Embedding of a planar rational compactum into
a planar continuum with the same rim-type},
     journal = {Fundamenta Mathematicae},
     pages = {113--118},
     publisher = {mathdoc},
     volume = {168},
     number = {2},
     year = {2001},
     doi = {10.4064/fm168-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-2/}
}
TY  - JOUR
AU  - Sophia Zafiridou
TI  - Embedding of a planar rational compactum into
a planar continuum with the same rim-type
JO  - Fundamenta Mathematicae
PY  - 2001
SP  - 113
EP  - 118
VL  - 168
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-2/
DO  - 10.4064/fm168-2-2
LA  - en
ID  - 10_4064_fm168_2_2
ER  - 
%0 Journal Article
%A Sophia Zafiridou
%T Embedding of a planar rational compactum into
a planar continuum with the same rim-type
%J Fundamenta Mathematicae
%D 2001
%P 113-118
%V 168
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-2/
%R 10.4064/fm168-2-2
%G en
%F 10_4064_fm168_2_2
Sophia Zafiridou. Embedding of a planar rational compactum into
a planar continuum with the same rim-type. Fundamenta Mathematicae, Tome 168 (2001) no. 2, pp. 113-118. doi : 10.4064/fm168-2-2. http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-2/

Cité par Sources :