The equivariant universality and couniversality of the Cantor cube
Fundamenta Mathematicae, Tome 167 (2001) no. 3, pp. 269-275.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\langle G,X,\alpha \rangle $ be a $G$-space, where $G$ is a non-Archimedean (having a local base at the identity consisting of open subgroups) and second countable topological group, and $X$ is a zero-dimensional compact metrizable space. Let $\langle H(\{ 0,1\} ^{\aleph _0}),\{ 0,1\} ^{\aleph _0},\tau \rangle $ be the natural (evaluation) action of the full group of autohomeomorphisms of the Cantor cube. Then (1) there exists a topological group embedding $\varphi :G \hookrightarrow H(\{ 0,1\} ^{\aleph _0})$; (2) there exists an embedding $\psi :X \hookrightarrow \{ 0,1\} ^{\aleph _0}$, equivariant with respect to $\varphi $, such that $\psi (X)$ is an equivariant retract of $\{ 0,1\} ^{\aleph _0}$ with respect to $\varphi $ and $\psi $.
DOI : 10.4064/fm167-3-4
Keywords: langle alpha rangle g space where non archimedean having local base identity consisting subgroups second countable topological group zero dimensional compact metrizable space langle aleph aleph tau rangle natural evaluation action full group autohomeomorphisms cantor cube there exists topological group embedding varphi hookrightarrow aleph there exists embedding psi hookrightarrow aleph equivariant respect varphi psi equivariant retract aleph respect varphi psi

Michael G. Megrelishvili 1 ; Tzvi Scarr 2

1 Department of Mathematics Bar-Ilan University 52900 Ramat-Gan, Israel
2 Department of Applied Mathematics Jerusalem College of Technology 21 Havaad Haleumi St. Jerusalem, Israel 91160
@article{10_4064_fm167_3_4,
     author = {Michael G. Megrelishvili and Tzvi Scarr},
     title = {The equivariant universality and
couniversality of the {Cantor} cube},
     journal = {Fundamenta Mathematicae},
     pages = {269--275},
     publisher = {mathdoc},
     volume = {167},
     number = {3},
     year = {2001},
     doi = {10.4064/fm167-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-4/}
}
TY  - JOUR
AU  - Michael G. Megrelishvili
AU  - Tzvi Scarr
TI  - The equivariant universality and
couniversality of the Cantor cube
JO  - Fundamenta Mathematicae
PY  - 2001
SP  - 269
EP  - 275
VL  - 167
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-4/
DO  - 10.4064/fm167-3-4
LA  - en
ID  - 10_4064_fm167_3_4
ER  - 
%0 Journal Article
%A Michael G. Megrelishvili
%A Tzvi Scarr
%T The equivariant universality and
couniversality of the Cantor cube
%J Fundamenta Mathematicae
%D 2001
%P 269-275
%V 167
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-4/
%R 10.4064/fm167-3-4
%G en
%F 10_4064_fm167_3_4
Michael G. Megrelishvili; Tzvi Scarr. The equivariant universality and
couniversality of the Cantor cube. Fundamenta Mathematicae, Tome 167 (2001) no. 3, pp. 269-275. doi : 10.4064/fm167-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-4/

Cité par Sources :