Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Michael G. Megrelishvili 1 ; Tzvi Scarr 2
@article{10_4064_fm167_3_4, author = {Michael G. Megrelishvili and Tzvi Scarr}, title = {The equivariant universality and couniversality of the {Cantor} cube}, journal = {Fundamenta Mathematicae}, pages = {269--275}, publisher = {mathdoc}, volume = {167}, number = {3}, year = {2001}, doi = {10.4064/fm167-3-4}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-4/} }
TY - JOUR AU - Michael G. Megrelishvili AU - Tzvi Scarr TI - The equivariant universality and couniversality of the Cantor cube JO - Fundamenta Mathematicae PY - 2001 SP - 269 EP - 275 VL - 167 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-4/ DO - 10.4064/fm167-3-4 LA - en ID - 10_4064_fm167_3_4 ER -
%0 Journal Article %A Michael G. Megrelishvili %A Tzvi Scarr %T The equivariant universality and couniversality of the Cantor cube %J Fundamenta Mathematicae %D 2001 %P 269-275 %V 167 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-4/ %R 10.4064/fm167-3-4 %G en %F 10_4064_fm167_3_4
Michael G. Megrelishvili; Tzvi Scarr. The equivariant universality and couniversality of the Cantor cube. Fundamenta Mathematicae, Tome 167 (2001) no. 3, pp. 269-275. doi : 10.4064/fm167-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-4/
Cité par Sources :