The equivariant universality and
couniversality of the Cantor cube
Fundamenta Mathematicae, Tome 167 (2001) no. 3, pp. 269-275
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\langle G,X,\alpha \rangle $ be
a $G$-space, where $G$ is a non-Archimedean (having a local base
at the identity consisting of open subgroups) and second
countable topological group, and $X$ is a zero-dimensional
compact metrizable space. Let $\langle H(\{
0,1\} ^{\aleph _0}),\{
0,1\} ^{\aleph _0},\tau \rangle
$ be the natural (evaluation) action of the full group
of autohomeomorphisms of the Cantor cube. Then (1) there exists a topological group embedding $\varphi :G
\hookrightarrow H(\{
0,1\} ^{\aleph _0})$; (2) there exists an
embedding $\psi :X \hookrightarrow
\{ 0,1\} ^{\aleph _0}$,
equivariant with respect to $\varphi $, such that $\psi (X)$ is
an equivariant retract of $\{ 0,1\}
^{\aleph _0}$ with respect to $\varphi $ and $\psi
$.
Keywords:
langle alpha rangle g space where non archimedean having local base identity consisting subgroups second countable topological group zero dimensional compact metrizable space langle aleph aleph tau rangle natural evaluation action full group autohomeomorphisms cantor cube there exists topological group embedding varphi hookrightarrow aleph there exists embedding psi hookrightarrow aleph equivariant respect varphi psi equivariant retract aleph respect varphi psi
Affiliations des auteurs :
Michael G. Megrelishvili 1 ; Tzvi Scarr 2
@article{10_4064_fm167_3_4,
author = {Michael G. Megrelishvili and Tzvi Scarr},
title = {The equivariant universality and
couniversality of the {Cantor} cube},
journal = {Fundamenta Mathematicae},
pages = {269--275},
publisher = {mathdoc},
volume = {167},
number = {3},
year = {2001},
doi = {10.4064/fm167-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-4/}
}
TY - JOUR AU - Michael G. Megrelishvili AU - Tzvi Scarr TI - The equivariant universality and couniversality of the Cantor cube JO - Fundamenta Mathematicae PY - 2001 SP - 269 EP - 275 VL - 167 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-4/ DO - 10.4064/fm167-3-4 LA - en ID - 10_4064_fm167_3_4 ER -
%0 Journal Article %A Michael G. Megrelishvili %A Tzvi Scarr %T The equivariant universality and couniversality of the Cantor cube %J Fundamenta Mathematicae %D 2001 %P 269-275 %V 167 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-4/ %R 10.4064/fm167-3-4 %G en %F 10_4064_fm167_3_4
Michael G. Megrelishvili; Tzvi Scarr. The equivariant universality and couniversality of the Cantor cube. Fundamenta Mathematicae, Tome 167 (2001) no. 3, pp. 269-275. doi: 10.4064/fm167-3-4
Cité par Sources :