Compact covering mappings and cofinal families of compact subsets of a Borel set
Fundamenta Mathematicae, Tome 167 (2001) no. 3, pp. 213-249.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Among other results we prove that the topological statement “Any compact covering mapping between two ${\bf \Pi }^0_{3}$ spaces is inductively perfect” is equivalent to the set-theoretical statement “$\forall \alpha \in \omega ^\omega ,$ $\omega _1^{L(\alpha )}\omega _1$”; and that the statement “Any compact covering mapping between two coanalytic spaces is inductively perfect” is equivalent to “Analytic Determinacy”. We also prove that these statements are connected to some regularity properties of coanalytic cofinal sets in ${\cal K}(X)$, the hyperspace of all compact subsets of a Borel set $X$.
DOI : 10.4064/fm167-3-2
Keywords: among other results prove topological statement compact covering mapping between spaces inductively perfect equivalent set theoretical statement forall alpha omega omega omega alpha omega statement compact covering mapping between coanalytic spaces inductively perfect equivalent analytic determinacy prove these statements connected regularity properties coanalytic cofinal sets cal hyperspace compact subsets borel set

G. Debs 1 ; J. Saint Raymond 2

1 Equipe d'Analyse Université Paris 6 Boîte 186 4, place Jussieu 75252 Paris CEDEX 05, France
2 Equipe d'Analyse Université Paris 6 Boite 186 4, place Jussieu 75252 Paris CEDEX 05, France
@article{10_4064_fm167_3_2,
     author = {G. Debs and J. Saint Raymond},
     title = {Compact covering mappings and
cofinal families of compact subsets of a {Borel} set},
     journal = {Fundamenta Mathematicae},
     pages = {213--249},
     publisher = {mathdoc},
     volume = {167},
     number = {3},
     year = {2001},
     doi = {10.4064/fm167-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-2/}
}
TY  - JOUR
AU  - G. Debs
AU  - J. Saint Raymond
TI  - Compact covering mappings and
cofinal families of compact subsets of a Borel set
JO  - Fundamenta Mathematicae
PY  - 2001
SP  - 213
EP  - 249
VL  - 167
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-2/
DO  - 10.4064/fm167-3-2
LA  - en
ID  - 10_4064_fm167_3_2
ER  - 
%0 Journal Article
%A G. Debs
%A J. Saint Raymond
%T Compact covering mappings and
cofinal families of compact subsets of a Borel set
%J Fundamenta Mathematicae
%D 2001
%P 213-249
%V 167
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-2/
%R 10.4064/fm167-3-2
%G en
%F 10_4064_fm167_3_2
G. Debs; J. Saint Raymond. Compact covering mappings and
cofinal families of compact subsets of a Borel set. Fundamenta Mathematicae, Tome 167 (2001) no. 3, pp. 213-249. doi : 10.4064/fm167-3-2. http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-2/

Cité par Sources :