Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
G. Debs 1 ; J. Saint Raymond 2
@article{10_4064_fm167_3_2, author = {G. Debs and J. Saint Raymond}, title = {Compact covering mappings and cofinal families of compact subsets of a {Borel} set}, journal = {Fundamenta Mathematicae}, pages = {213--249}, publisher = {mathdoc}, volume = {167}, number = {3}, year = {2001}, doi = {10.4064/fm167-3-2}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-2/} }
TY - JOUR AU - G. Debs AU - J. Saint Raymond TI - Compact covering mappings and cofinal families of compact subsets of a Borel set JO - Fundamenta Mathematicae PY - 2001 SP - 213 EP - 249 VL - 167 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-2/ DO - 10.4064/fm167-3-2 LA - en ID - 10_4064_fm167_3_2 ER -
%0 Journal Article %A G. Debs %A J. Saint Raymond %T Compact covering mappings and cofinal families of compact subsets of a Borel set %J Fundamenta Mathematicae %D 2001 %P 213-249 %V 167 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-2/ %R 10.4064/fm167-3-2 %G en %F 10_4064_fm167_3_2
G. Debs; J. Saint Raymond. Compact covering mappings and cofinal families of compact subsets of a Borel set. Fundamenta Mathematicae, Tome 167 (2001) no. 3, pp. 213-249. doi : 10.4064/fm167-3-2. http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-2/
Cité par Sources :