Compact covering mappings and
cofinal families of compact subsets of a Borel set
Fundamenta Mathematicae, Tome 167 (2001) no. 3, pp. 213-249
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Among other results we prove that the topological statement
“Any compact covering mapping between two ${\bf
\Pi }^0_{3}$ spaces is inductively perfect” is equivalent to the
set-theoretical statement “$\forall \alpha \in \omega ^\omega
,$ $\omega _1^{L(\alpha )}\omega _1$”; and that the statement “Any
compact covering mapping between two coanalytic spaces is
inductively perfect” is equivalent to “Analytic Determinacy”.
We also prove that these statements are connected to some
regularity properties of coanalytic cofinal sets in ${\cal
K}(X)$, the hyperspace of all compact subsets of a Borel set
$X$.
Keywords:
among other results prove topological statement compact covering mapping between spaces inductively perfect equivalent set theoretical statement forall alpha omega omega omega alpha omega statement compact covering mapping between coanalytic spaces inductively perfect equivalent analytic determinacy prove these statements connected regularity properties coanalytic cofinal sets cal hyperspace compact subsets borel set
Affiliations des auteurs :
G. Debs 1 ; J. Saint Raymond 2
@article{10_4064_fm167_3_2,
author = {G. Debs and J. Saint Raymond},
title = {Compact covering mappings and
cofinal families of compact subsets of a {Borel} set},
journal = {Fundamenta Mathematicae},
pages = {213--249},
publisher = {mathdoc},
volume = {167},
number = {3},
year = {2001},
doi = {10.4064/fm167-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-2/}
}
TY - JOUR AU - G. Debs AU - J. Saint Raymond TI - Compact covering mappings and cofinal families of compact subsets of a Borel set JO - Fundamenta Mathematicae PY - 2001 SP - 213 EP - 249 VL - 167 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-2/ DO - 10.4064/fm167-3-2 LA - en ID - 10_4064_fm167_3_2 ER -
%0 Journal Article %A G. Debs %A J. Saint Raymond %T Compact covering mappings and cofinal families of compact subsets of a Borel set %J Fundamenta Mathematicae %D 2001 %P 213-249 %V 167 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm167-3-2/ %R 10.4064/fm167-3-2 %G en %F 10_4064_fm167_3_2
G. Debs; J. Saint Raymond. Compact covering mappings and cofinal families of compact subsets of a Borel set. Fundamenta Mathematicae, Tome 167 (2001) no. 3, pp. 213-249. doi: 10.4064/fm167-3-2
Cité par Sources :