Fields of surreal numbers and exponentiation
Fundamenta Mathematicae, Tome 167 (2001) no. 2, pp. 173-188
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that Conway's field of surreal numbers with its
natural exponential function has the same elementary properties
as the exponential field of real numbers. We obtain ordinal
bounds on the length of products, reciprocals, exponentials and
logarithms of surreal numbers in terms of the lengths of their
inputs. It follows that the set of surreal numbers of length
less than a given ordinal is a subfield of the field of all
surreal numbers if and only if this ordinal is an $\varepsilon
$-number. In that case, this field is even closed under surreal
exponentiation, and is an elementary extension of the real
exponential field.
Keywords:
conways field surreal numbers its natural exponential function has elementary properties exponential field real numbers obtain ordinal bounds length products reciprocals exponentials logarithms surreal numbers terms lengths their inputs follows set surreal numbers length given ordinal subfield field surreal numbers only ordinal varepsilon number field even closed under surreal exponentiation elementary extension real exponential field
Affiliations des auteurs :
Lou van den Dries 1 ; Philip Ehrlich 2
@article{10_4064_fm167_2_3,
author = {Lou van den Dries and Philip Ehrlich},
title = {Fields of surreal numbers and exponentiation},
journal = {Fundamenta Mathematicae},
pages = {173--188},
publisher = {mathdoc},
volume = {167},
number = {2},
year = {2001},
doi = {10.4064/fm167-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm167-2-3/}
}
TY - JOUR AU - Lou van den Dries AU - Philip Ehrlich TI - Fields of surreal numbers and exponentiation JO - Fundamenta Mathematicae PY - 2001 SP - 173 EP - 188 VL - 167 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm167-2-3/ DO - 10.4064/fm167-2-3 LA - en ID - 10_4064_fm167_2_3 ER -
Lou van den Dries; Philip Ehrlich. Fields of surreal numbers and exponentiation. Fundamenta Mathematicae, Tome 167 (2001) no. 2, pp. 173-188. doi: 10.4064/fm167-2-3
Cité par Sources :