Regular and limit sets for holomorphic correspondences
Fundamenta Mathematicae, Tome 167 (2001) no. 2, pp. 111-171
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Holomorphic correspondences are multivalued maps $f={\widetilde
Q}_+{\widetilde Q}_-^{-1}:Z \rightarrow W$ between Riemann surfaces
$Z$ and $W$, where ${\widetilde Q}_-$ and ${\widetilde Q}_+$ are
(single-valued) holomorphic maps from another Riemann surface $X$
onto $Z$ and $W$ respectively. When $Z=W$ one can iterate $f$
forwards, backwards or globally (allowing arbitrarily many changes
of direction from forwards to backwards and vice versa). Iterated
holomorphic correspondences on the Riemann sphere display many of
the features of the dynamics of Kleinian groups and rational maps,
of which they are a generalization. We lay the foundations for a
systematic study of regular and limit sets for holomorphic
correspondences, and prove theorems concerning the structure of
these sets applicable to large classes of such correspondences.
Keywords:
holomorphic correspondences multivalued maps widetilde widetilde rightarrow between riemann surfaces where widetilde widetilde single valued holomorphic maps another riemann surface respectively iterate forwards backwards globally allowing arbitrarily many changes direction forwards backwards vice versa iterated holomorphic correspondences riemann sphere display many features dynamics kleinian groups rational maps which generalization lay foundations systematic study regular limit sets holomorphic correspondences prove theorems concerning structure these sets applicable large classes correspondences
Affiliations des auteurs :
S. Bullett 1 ; C. Penrose 1
@article{10_4064_fm167_2_2,
author = {S. Bullett and C. Penrose},
title = {Regular and limit sets for holomorphic correspondences},
journal = {Fundamenta Mathematicae},
pages = {111--171},
publisher = {mathdoc},
volume = {167},
number = {2},
year = {2001},
doi = {10.4064/fm167-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm167-2-2/}
}
TY - JOUR AU - S. Bullett AU - C. Penrose TI - Regular and limit sets for holomorphic correspondences JO - Fundamenta Mathematicae PY - 2001 SP - 111 EP - 171 VL - 167 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm167-2-2/ DO - 10.4064/fm167-2-2 LA - en ID - 10_4064_fm167_2_2 ER -
S. Bullett; C. Penrose. Regular and limit sets for holomorphic correspondences. Fundamenta Mathematicae, Tome 167 (2001) no. 2, pp. 111-171. doi: 10.4064/fm167-2-2
Cité par Sources :