Regular and limit sets for holomorphic correspondences
Fundamenta Mathematicae, Tome 167 (2001) no. 2, pp. 111-171.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Holomorphic correspondences are multivalued maps $f={\widetilde Q}_+{\widetilde Q}_-^{-1}:Z \rightarrow W$ between Riemann surfaces $Z$ and $W$, where ${\widetilde Q}_-$ and ${\widetilde Q}_+$ are (single-valued) holomorphic maps from another Riemann surface $X$ onto $Z$ and $W$ respectively. When $Z=W$ one can iterate $f$ forwards, backwards or globally (allowing arbitrarily many changes of direction from forwards to backwards and vice versa). Iterated holomorphic correspondences on the Riemann sphere display many of the features of the dynamics of Kleinian groups and rational maps, of which they are a generalization. We lay the foundations for a systematic study of regular and limit sets for holomorphic correspondences, and prove theorems concerning the structure of these sets applicable to large classes of such correspondences.
DOI : 10.4064/fm167-2-2
Keywords: holomorphic correspondences multivalued maps widetilde widetilde rightarrow between riemann surfaces where widetilde widetilde single valued holomorphic maps another riemann surface respectively iterate forwards backwards globally allowing arbitrarily many changes direction forwards backwards vice versa iterated holomorphic correspondences riemann sphere display many features dynamics kleinian groups rational maps which generalization lay foundations systematic study regular limit sets holomorphic correspondences prove theorems concerning structure these sets applicable large classes correspondences

S. Bullett 1 ; C. Penrose 1

1 School of Mathematical Sciences Queen Mary and Westfield College University of London Mile End Road London E1 4NS, UK
@article{10_4064_fm167_2_2,
     author = {S. Bullett and C. Penrose},
     title = {Regular and limit sets for holomorphic correspondences},
     journal = {Fundamenta Mathematicae},
     pages = {111--171},
     publisher = {mathdoc},
     volume = {167},
     number = {2},
     year = {2001},
     doi = {10.4064/fm167-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm167-2-2/}
}
TY  - JOUR
AU  - S. Bullett
AU  - C. Penrose
TI  - Regular and limit sets for holomorphic correspondences
JO  - Fundamenta Mathematicae
PY  - 2001
SP  - 111
EP  - 171
VL  - 167
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm167-2-2/
DO  - 10.4064/fm167-2-2
LA  - en
ID  - 10_4064_fm167_2_2
ER  - 
%0 Journal Article
%A S. Bullett
%A C. Penrose
%T Regular and limit sets for holomorphic correspondences
%J Fundamenta Mathematicae
%D 2001
%P 111-171
%V 167
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm167-2-2/
%R 10.4064/fm167-2-2
%G en
%F 10_4064_fm167_2_2
S. Bullett; C. Penrose. Regular and limit sets for holomorphic correspondences. Fundamenta Mathematicae, Tome 167 (2001) no. 2, pp. 111-171. doi : 10.4064/fm167-2-2. http://geodesic.mathdoc.fr/articles/10.4064/fm167-2-2/

Cité par Sources :