On universality of countable and weak products
of sigma hereditarily disconnected spaces
Fundamenta Mathematicae, Tome 167 (2001) no. 2, pp. 97-109
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Suppose a metrizable separable space $Y$ is sigma
hereditarily disconnected, i.e., it is a countable union of
hereditarily disconnected subspaces. We prove that the countable
power $X^\omega $ of any subspace $X\subset Y$ is not universal
for the class ${\cal A}_2$ of absolute $G_{\delta \sigma
}$-sets; moreover, if $Y$ is an absolute $F_{\sigma \delta
}$-set, then $X^\omega $ contains no closed topological copy of
the Nagata space ${\cal N}=W(I,{\mathbb P})$;
if $Y$ is an absolute $G_\delta $-set, then $X^\omega $ contains
no closed copy of the Smirnov space ${\sigma }=W(I,0)$. On
the other hand, the countable power $X^\omega $ of any absolute
retract of the first Baire category contains a closed
topological copy of each ${\sigma }$-compact space having a
strongly countable-dimensional completion. We also prove
that for a Polish space $X$ and a subspace $Y\subset X$
admitting an embedding into a ${\sigma }$-compact sigma
hereditarily disconnected space $Z$ the weak product
$W(X,Y)=\{ (x_i)\in X^\omega :$ almost all
$x_i\in Y\} \subset X^\omega $ is not universal
for the class ${\cal M}_3$ of absolute $G_{\delta {\sigma
}\delta }$-sets; moreover, if the space $Z$ is compact then
$W(X,Y)$ is not universal for the class ${\cal M}_2$ of
absolute $F_{\sigma \delta }$-sets.
Keywords:
suppose metrizable separable space sigma hereditarily disconnected countable union hereditarily disconnected subspaces prove countable power omega subspace subset universal class cal absolute delta sigma sets moreover absolute sigma delta set omega contains closed topological copy nagata space cal mathbb absolute delta set omega contains closed copy smirnov space sigma other countable power omega absolute retract first baire category contains closed topological copy each sigma compact space having strongly countable dimensional completion prove polish space subspace subset admitting embedding sigma compact sigma hereditarily disconnected space weak product omega almost subset omega universal class cal absolute delta sigma delta sets moreover space compact universal class cal absolute sigma delta sets
Affiliations des auteurs :
Taras Banakh 1 ; Robert Cauty 2
@article{10_4064_fm167_2_1,
author = {Taras Banakh and Robert Cauty},
title = {On universality of countable and weak products
of sigma hereditarily disconnected spaces},
journal = {Fundamenta Mathematicae},
pages = {97--109},
publisher = {mathdoc},
volume = {167},
number = {2},
year = {2001},
doi = {10.4064/fm167-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm167-2-1/}
}
TY - JOUR AU - Taras Banakh AU - Robert Cauty TI - On universality of countable and weak products of sigma hereditarily disconnected spaces JO - Fundamenta Mathematicae PY - 2001 SP - 97 EP - 109 VL - 167 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm167-2-1/ DO - 10.4064/fm167-2-1 LA - en ID - 10_4064_fm167_2_1 ER -
%0 Journal Article %A Taras Banakh %A Robert Cauty %T On universality of countable and weak products of sigma hereditarily disconnected spaces %J Fundamenta Mathematicae %D 2001 %P 97-109 %V 167 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm167-2-1/ %R 10.4064/fm167-2-1 %G en %F 10_4064_fm167_2_1
Taras Banakh; Robert Cauty. On universality of countable and weak products of sigma hereditarily disconnected spaces. Fundamenta Mathematicae, Tome 167 (2001) no. 2, pp. 97-109. doi: 10.4064/fm167-2-1
Cité par Sources :