$\omega $-Limit sets for triangular mappings
Fundamenta Mathematicae, Tome 167 (2001) no. 1, pp. 1-15
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In 1992 Agronsky and Ceder proved that any finite collection
of non-degenerate Peano continua in the unit square is an
$\omega $-limit set for a continuous map. We improve this result
by showing that it is valid, with natural restrictions, for the
triangular maps $(x,y)\mapsto (f(x),g(x,y))$ of
the square. For example, we show that a non-trivial Peano
continuum $C\subset I^2$ is an orbit-enclosing $\omega $-limit
set of a triangular map if and only if it has a projection
property. If $C$ is a finite union of Peano continua then, in
addition, a coherence property is needed. We also provide
examples of two slightly different non-Peano continua $C$ and
$D$ in the square such that $C$ is and $D$ is not an $\omega
$-limit set of a triangular map. In view of these examples a
characterization of the continua which are $\omega $-limit sets
for triangular mappings seems to be difficult.
Keywords:
agronsky ceder proved finite collection non degenerate peano continua unit square omega limit set continuous map improve result showing valid natural restrictions triangular maps mapsto square example non trivial peano continuum subset orbit enclosing omega limit set triangular map only has projection property finite union peano continua addition coherence property needed provide examples slightly different non peano continua square omega limit set triangular map view these examples characterization continua which omega limit sets triangular mappings seems difficult
Affiliations des auteurs :
Victor Jiménez López 1 ; Jaroslav Smítal 2
@article{10_4064_fm167_1_1,
author = {Victor Jim\'enez L\'opez and Jaroslav Sm{\'\i}tal},
title = {$\omega ${-Limit} sets for triangular mappings},
journal = {Fundamenta Mathematicae},
pages = {1--15},
publisher = {mathdoc},
volume = {167},
number = {1},
year = {2001},
doi = {10.4064/fm167-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm167-1-1/}
}
TY - JOUR AU - Victor Jiménez López AU - Jaroslav Smítal TI - $\omega $-Limit sets for triangular mappings JO - Fundamenta Mathematicae PY - 2001 SP - 1 EP - 15 VL - 167 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm167-1-1/ DO - 10.4064/fm167-1-1 LA - en ID - 10_4064_fm167_1_1 ER -
Victor Jiménez López; Jaroslav Smítal. $\omega $-Limit sets for triangular mappings. Fundamenta Mathematicae, Tome 167 (2001) no. 1, pp. 1-15. doi: 10.4064/fm167-1-1
Cité par Sources :