$\omega $-Limit sets for triangular mappings
Fundamenta Mathematicae, Tome 167 (2001) no. 1, pp. 1-15.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In 1992 Agronsky and Ceder proved that any finite collection of non-degenerate Peano continua in the unit square is an $\omega $-limit set for a continuous map. We improve this result by showing that it is valid, with natural restrictions, for the triangular maps $(x,y)\mapsto (f(x),g(x,y))$ of the square. For example, we show that a non-trivial Peano continuum $C\subset I^2$ is an orbit-enclosing $\omega $-limit set of a triangular map if and only if it has a projection property. If $C$ is a finite union of Peano continua then, in addition, a coherence property is needed. We also provide examples of two slightly different non-Peano continua $C$ and $D$ in the square such that $C$ is and $D$ is not an $\omega $-limit set of a triangular map. In view of these examples a characterization of the continua which are $\omega $-limit sets for triangular mappings seems to be difficult.
DOI : 10.4064/fm167-1-1
Keywords: agronsky ceder proved finite collection non degenerate peano continua unit square omega limit set continuous map improve result showing valid natural restrictions triangular maps mapsto square example non trivial peano continuum subset orbit enclosing omega limit set triangular map only has projection property finite union peano continua addition coherence property needed provide examples slightly different non peano continua square omega limit set triangular map view these examples characterization continua which omega limit sets triangular mappings seems difficult

Victor Jiménez López 1 ; Jaroslav Smítal 2

1 Departamento de Matemáticas Universidad de Murcia Campus de Espinardo 30100 Murcia, Spain
2 Institute of Mathematics Silesian University 746 01 Opava, Czech Republic
@article{10_4064_fm167_1_1,
     author = {Victor Jim\'enez L\'opez and Jaroslav Sm{\'\i}tal},
     title = {$\omega ${-Limit} sets for triangular mappings},
     journal = {Fundamenta Mathematicae},
     pages = {1--15},
     publisher = {mathdoc},
     volume = {167},
     number = {1},
     year = {2001},
     doi = {10.4064/fm167-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm167-1-1/}
}
TY  - JOUR
AU  - Victor Jiménez López
AU  - Jaroslav Smítal
TI  - $\omega $-Limit sets for triangular mappings
JO  - Fundamenta Mathematicae
PY  - 2001
SP  - 1
EP  - 15
VL  - 167
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm167-1-1/
DO  - 10.4064/fm167-1-1
LA  - en
ID  - 10_4064_fm167_1_1
ER  - 
%0 Journal Article
%A Victor Jiménez López
%A Jaroslav Smítal
%T $\omega $-Limit sets for triangular mappings
%J Fundamenta Mathematicae
%D 2001
%P 1-15
%V 167
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm167-1-1/
%R 10.4064/fm167-1-1
%G en
%F 10_4064_fm167_1_1
Victor Jiménez López; Jaroslav Smítal. $\omega $-Limit sets for triangular mappings. Fundamenta Mathematicae, Tome 167 (2001) no. 1, pp. 1-15. doi : 10.4064/fm167-1-1. http://geodesic.mathdoc.fr/articles/10.4064/fm167-1-1/

Cité par Sources :