Borel chromatic number of closed graphs
Fundamenta Mathematicae, Tome 234 (2016) no. 2, pp. 163-169
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We construct, for each countable ordinal $\xi $, a closed graph with Borel chromatic number 2 and Baire class $\xi $ chromatic number $\aleph _0$.
Keywords:
construct each countable ordinal closed graph borel chromatic number baire class chromatic number aleph
Affiliations des auteurs :
Dominique Lecomte 1 ; Miroslav Zelený 2
@article{10_4064_fm152_11_2015,
author = {Dominique Lecomte and Miroslav Zelen\'y},
title = {Borel chromatic number of closed graphs},
journal = {Fundamenta Mathematicae},
pages = {163--169},
publisher = {mathdoc},
volume = {234},
number = {2},
year = {2016},
doi = {10.4064/fm152-11-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm152-11-2015/}
}
TY - JOUR AU - Dominique Lecomte AU - Miroslav Zelený TI - Borel chromatic number of closed graphs JO - Fundamenta Mathematicae PY - 2016 SP - 163 EP - 169 VL - 234 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm152-11-2015/ DO - 10.4064/fm152-11-2015 LA - en ID - 10_4064_fm152_11_2015 ER -
Dominique Lecomte; Miroslav Zelený. Borel chromatic number of closed graphs. Fundamenta Mathematicae, Tome 234 (2016) no. 2, pp. 163-169. doi: 10.4064/fm152-11-2015
Cité par Sources :