Borel chromatic number of closed graphs
Fundamenta Mathematicae, Tome 234 (2016) no. 2, pp. 163-169.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We construct, for each countable ordinal $\xi $, a closed graph with Borel chromatic number 2 and Baire class $\xi $ chromatic number $\aleph _0$.
DOI : 10.4064/fm152-11-2015
Keywords: construct each countable ordinal closed graph borel chromatic number baire class chromatic number aleph

Dominique Lecomte 1 ; Miroslav Zelený 2

1 Institut de Mathématiques de Jussieu Projet Analyse Fonctionnelle Université Paris 6 Couloir 16-26, 4ème étage, Case 247 4, place Jussieu 75252 Paris Cedex 05, France and I.U.T. de l’Oise, site de Creil Université de Picardie 13, allée de la Faïencerie 60107 Creil, France
2 Faculty of Mathematics and Physics Department of Mathematical Analysis Charles University Sokolovská 83 186 75 Praha, Czech Republic
@article{10_4064_fm152_11_2015,
     author = {Dominique Lecomte and Miroslav Zelen\'y},
     title = {Borel chromatic number of closed graphs},
     journal = {Fundamenta Mathematicae},
     pages = {163--169},
     publisher = {mathdoc},
     volume = {234},
     number = {2},
     year = {2016},
     doi = {10.4064/fm152-11-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm152-11-2015/}
}
TY  - JOUR
AU  - Dominique Lecomte
AU  - Miroslav Zelený
TI  - Borel chromatic number of closed graphs
JO  - Fundamenta Mathematicae
PY  - 2016
SP  - 163
EP  - 169
VL  - 234
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm152-11-2015/
DO  - 10.4064/fm152-11-2015
LA  - en
ID  - 10_4064_fm152_11_2015
ER  - 
%0 Journal Article
%A Dominique Lecomte
%A Miroslav Zelený
%T Borel chromatic number of closed graphs
%J Fundamenta Mathematicae
%D 2016
%P 163-169
%V 234
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm152-11-2015/
%R 10.4064/fm152-11-2015
%G en
%F 10_4064_fm152_11_2015
Dominique Lecomte; Miroslav Zelený. Borel chromatic number of closed graphs. Fundamenta Mathematicae, Tome 234 (2016) no. 2, pp. 163-169. doi : 10.4064/fm152-11-2015. http://geodesic.mathdoc.fr/articles/10.4064/fm152-11-2015/

Cité par Sources :