Strong homology, derived limits, and set theory
Fundamenta Mathematicae, Tome 236 (2017) no. 1, pp. 71-82.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the question of the additivity of strong homology. This entails isolating the set-theoretic content of the higher derived limits of an inverse system indexed by the functions from $\mathbb {N}$ to $\mathbb {N}$. We show that this system governs, at a certain level, the additivity of strong homology over sums of arbitrary cardinality. We show in addition that, under the assumption of the Proper Forcing Axiom, strong homology is not additive, not even on closed subspaces of $\mathbb {R}^4$.
DOI : 10.4064/fm140-4-2016
Keywords: consider question additivity strong homology entails isolating set theoretic content higher derived limits inverse system indexed functions mathbb mathbb system governs certain level additivity strong homology sums arbitrary cardinality addition under assumption proper forcing axiom strong homology additive even closed subspaces mathbb

Jeffrey Bergfalk 1

1 Department of Mathematics Cornell University Malott Hall Ithaca, NY 14853-4201, U.S.A.
@article{10_4064_fm140_4_2016,
     author = {Jeffrey Bergfalk},
     title = {Strong homology, derived limits, and set theory},
     journal = {Fundamenta Mathematicae},
     pages = {71--82},
     publisher = {mathdoc},
     volume = {236},
     number = {1},
     year = {2017},
     doi = {10.4064/fm140-4-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm140-4-2016/}
}
TY  - JOUR
AU  - Jeffrey Bergfalk
TI  - Strong homology, derived limits, and set theory
JO  - Fundamenta Mathematicae
PY  - 2017
SP  - 71
EP  - 82
VL  - 236
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm140-4-2016/
DO  - 10.4064/fm140-4-2016
LA  - en
ID  - 10_4064_fm140_4_2016
ER  - 
%0 Journal Article
%A Jeffrey Bergfalk
%T Strong homology, derived limits, and set theory
%J Fundamenta Mathematicae
%D 2017
%P 71-82
%V 236
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm140-4-2016/
%R 10.4064/fm140-4-2016
%G en
%F 10_4064_fm140_4_2016
Jeffrey Bergfalk. Strong homology, derived limits, and set theory. Fundamenta Mathematicae, Tome 236 (2017) no. 1, pp. 71-82. doi : 10.4064/fm140-4-2016. http://geodesic.mathdoc.fr/articles/10.4064/fm140-4-2016/

Cité par Sources :