Automorphisms of $\mathcal P(\lambda )/\mathcal I_\kappa $
Fundamenta Mathematicae, Tome 233 (2016) no. 3, pp. 271-291
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study conditions on automorphisms of Boolean algebras of the form $\mathcal P(\lambda )/\mathcal I_{\kappa }$ (where $\lambda $ is an uncountable cardinal and $\mathcal I_{\kappa }$ is the ideal of sets of cardinality less than $\kappa $) which allow one to conclude that a given automorphism is trivial. We show (among other things) that every automorphism of $\mathcal P(2^{\kappa })/\mathcal I_{\kappa ^{+}}$ which is trivial on all sets of cardinality $\kappa ^{+}$ is trivial, and that MA$_{\aleph _{1}}$ implies both that every automorphism of $\mathcal {P}(\mathbb {R})/\tt{Fin} $ is trivial on a cocountable set and that every automorphism of $\mathcal P(\mathbb R)/\tt {Ctble}$ is trivial.
Keywords:
study conditions automorphisms boolean algebras form mathcal lambda mathcal kappa where lambda uncountable cardinal mathcal kappa ideal sets cardinality kappa which allow conclude given automorphism trivial among other things every automorphism mathcal kappa mathcal kappa which trivial sets cardinality kappa trivial aleph implies every automorphism mathcal mathbb fin trivial cocountable set every automorphism mathcal mathbb ctble trivial
Affiliations des auteurs :
Paul Larson 1 ; Paul McKenney 1
@article{10_4064_fm129_12_2015,
author = {Paul Larson and Paul McKenney},
title = {Automorphisms of $\mathcal P(\lambda )/\mathcal I_\kappa $},
journal = {Fundamenta Mathematicae},
pages = {271--291},
publisher = {mathdoc},
volume = {233},
number = {3},
year = {2016},
doi = {10.4064/fm129-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm129-12-2015/}
}
TY - JOUR AU - Paul Larson AU - Paul McKenney TI - Automorphisms of $\mathcal P(\lambda )/\mathcal I_\kappa $ JO - Fundamenta Mathematicae PY - 2016 SP - 271 EP - 291 VL - 233 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm129-12-2015/ DO - 10.4064/fm129-12-2015 LA - en ID - 10_4064_fm129_12_2015 ER -
Paul Larson; Paul McKenney. Automorphisms of $\mathcal P(\lambda )/\mathcal I_\kappa $. Fundamenta Mathematicae, Tome 233 (2016) no. 3, pp. 271-291. doi: 10.4064/fm129-12-2015
Cité par Sources :