Automorphisms of $\mathcal P(\lambda )/\mathcal I_\kappa $
Fundamenta Mathematicae, Tome 233 (2016) no. 3, pp. 271-291.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study conditions on automorphisms of Boolean algebras of the form $\mathcal P(\lambda )/\mathcal I_{\kappa }$ (where $\lambda $ is an uncountable cardinal and $\mathcal I_{\kappa }$ is the ideal of sets of cardinality less than $\kappa $) which allow one to conclude that a given automorphism is trivial. We show (among other things) that every automorphism of $\mathcal P(2^{\kappa })/\mathcal I_{\kappa ^{+}}$ which is trivial on all sets of cardinality $\kappa ^{+}$ is trivial, and that MA$_{\aleph _{1}}$ implies both that every automorphism of $\mathcal {P}(\mathbb {R})/\tt{Fin} $ is trivial on a cocountable set and that every automorphism of $\mathcal P(\mathbb R)/\tt {Ctble}$ is trivial.
DOI : 10.4064/fm129-12-2015
Keywords: study conditions automorphisms boolean algebras form mathcal lambda mathcal kappa where lambda uncountable cardinal mathcal kappa ideal sets cardinality kappa which allow conclude given automorphism trivial among other things every automorphism mathcal kappa mathcal kappa which trivial sets cardinality kappa trivial aleph implies every automorphism mathcal mathbb fin trivial cocountable set every automorphism mathcal mathbb ctble trivial

Paul Larson 1 ; Paul McKenney 1

1 Department of Mathematics Miami University Oxford, OH 45056, U.S.A.
@article{10_4064_fm129_12_2015,
     author = {Paul Larson and Paul McKenney},
     title = {Automorphisms of $\mathcal P(\lambda )/\mathcal I_\kappa $},
     journal = {Fundamenta Mathematicae},
     pages = {271--291},
     publisher = {mathdoc},
     volume = {233},
     number = {3},
     year = {2016},
     doi = {10.4064/fm129-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm129-12-2015/}
}
TY  - JOUR
AU  - Paul Larson
AU  - Paul McKenney
TI  - Automorphisms of $\mathcal P(\lambda )/\mathcal I_\kappa $
JO  - Fundamenta Mathematicae
PY  - 2016
SP  - 271
EP  - 291
VL  - 233
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm129-12-2015/
DO  - 10.4064/fm129-12-2015
LA  - en
ID  - 10_4064_fm129_12_2015
ER  - 
%0 Journal Article
%A Paul Larson
%A Paul McKenney
%T Automorphisms of $\mathcal P(\lambda )/\mathcal I_\kappa $
%J Fundamenta Mathematicae
%D 2016
%P 271-291
%V 233
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm129-12-2015/
%R 10.4064/fm129-12-2015
%G en
%F 10_4064_fm129_12_2015
Paul Larson; Paul McKenney. Automorphisms of $\mathcal P(\lambda )/\mathcal I_\kappa $. Fundamenta Mathematicae, Tome 233 (2016) no. 3, pp. 271-291. doi : 10.4064/fm129-12-2015. http://geodesic.mathdoc.fr/articles/10.4064/fm129-12-2015/

Cité par Sources :