The linear refinement number and selection theory
Fundamenta Mathematicae, Tome 234 (2016) no. 1, pp. 15-40.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The linear refinement number $\mathfrak {lr}$ is the minimal cardinality of a centered family in ${[\omega ]^{\omega }}$ such that no linearly ordered set in $({[\omega ]^{\omega }},\subseteq ^*)$ refines this family. The linear excluded middle number $\mathfrak {lx}$ is a variation of $\mathfrak {lr}$. We show that these numbers estimate the critical cardinalities of a number of selective covering properties. We compare these numbers to the classical combinatorial cardinal characteristics of the continuum. We prove that $\mathfrak {lr}=\mathfrak {lx}=\mathfrak {d}$ in all models where the continuum is at most $\aleph _2$, and that the cofinality of $\mathfrak {lr}$ is uncountable. Using the method of forcing, we show that $\mathfrak {lr}$ and $\mathfrak {lx}$ are not provably equal to $\mathfrak {d}$, and rule out several potential bounds on these numbers. Our results solve a number of open problems.
DOI : 10.4064/fm124-8-2015
Keywords: linear refinement number mathfrak minimal cardinality centered family omega omega linearly ordered set omega omega subseteq * refines family linear excluded middle number mathfrak variation mathfrak these numbers estimate critical cardinalities number selective covering properties compare these numbers classical combinatorial cardinal characteristics continuum prove mathfrak mathfrak mathfrak models where continuum aleph cofinality mathfrak uncountable using method forcing mathfrak mathfrak provably equal mathfrak rule out several potential bounds these numbers results solve number problems

Michał Machura 1 ; Saharon Shelah 2 ; Boaz Tsaban 3

1 Institute of Mathematics University of Silesia Bankowa 14 40-007 Katowice, Poland and Department of Mathematics Bar-Ilan University Ramat Gan 5290002, Israel
2 Einstein Institute of Mathematics The Hebrew University of Jerusalem Givat Ram, 9190401 Jerusalem, Israel and Mathematics Department Rutgers University New Brunswick, NJ, U.S.A.
3 Department of Mathematics Bar-Ilan University Ramat Gan 5290002, Israel and Department of Mathematics Weizmann Institute of Science Rehovot 7610001, Israel
@article{10_4064_fm124_8_2015,
     author = {Micha{\l} Machura and Saharon Shelah and Boaz Tsaban},
     title = {The linear refinement number and selection theory},
     journal = {Fundamenta Mathematicae},
     pages = {15--40},
     publisher = {mathdoc},
     volume = {234},
     number = {1},
     year = {2016},
     doi = {10.4064/fm124-8-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm124-8-2015/}
}
TY  - JOUR
AU  - Michał Machura
AU  - Saharon Shelah
AU  - Boaz Tsaban
TI  - The linear refinement number and selection theory
JO  - Fundamenta Mathematicae
PY  - 2016
SP  - 15
EP  - 40
VL  - 234
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm124-8-2015/
DO  - 10.4064/fm124-8-2015
LA  - en
ID  - 10_4064_fm124_8_2015
ER  - 
%0 Journal Article
%A Michał Machura
%A Saharon Shelah
%A Boaz Tsaban
%T The linear refinement number and selection theory
%J Fundamenta Mathematicae
%D 2016
%P 15-40
%V 234
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm124-8-2015/
%R 10.4064/fm124-8-2015
%G en
%F 10_4064_fm124_8_2015
Michał Machura; Saharon Shelah; Boaz Tsaban. The linear refinement number and selection theory. Fundamenta Mathematicae, Tome 234 (2016) no. 1, pp. 15-40. doi : 10.4064/fm124-8-2015. http://geodesic.mathdoc.fr/articles/10.4064/fm124-8-2015/

Cité par Sources :