On 0, 1-laws and asymptotics of definable sets in geometric Fraïssé classes
Fundamenta Mathematicae, Tome 239 (2017) no. 3, pp. 201-219.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We examine one consequence for the generic theory $T_\mathbf {C}$ of a geometric Fraïssé class $\mathbf {C}$ when $\mathbf {C}$ has the $0,1$-law for first-order logic with convergence to $T_\mathbf {C}$ itself. We show that in this scenario, if the asymptotic probability measure in play is not terribly exotic, then $\mathbf {C}$ is “very close” to being a 1-dimensional asymptotic class—so that $T_\mathbf {C}$ is supersimple of finite $SU$-rank.
DOI : 10.4064/fm122-1-2017
Keywords: examine consequence generic theory mathbf geometric fra class mathbf mathbf has law first order logic convergence mathbf itself scenario asymptotic probability measure play terribly exotic mathbf close being dimensional asymptotic class mathbf supersimple finite su rank

Cameron Donnay Hill 1

1 Department of Mathematics and Computer Science Wesleyan University 655 Exley Science Tower 265 Church Street Middletown, CT 06459, U.S.A.
@article{10_4064_fm122_1_2017,
     author = {Cameron Donnay Hill},
     title = {On 0, 1-laws and asymptotics of definable sets in geometric {Fra{\"\i}ss\'e} classes},
     journal = {Fundamenta Mathematicae},
     pages = {201--219},
     publisher = {mathdoc},
     volume = {239},
     number = {3},
     year = {2017},
     doi = {10.4064/fm122-1-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm122-1-2017/}
}
TY  - JOUR
AU  - Cameron Donnay Hill
TI  - On 0, 1-laws and asymptotics of definable sets in geometric Fraïssé classes
JO  - Fundamenta Mathematicae
PY  - 2017
SP  - 201
EP  - 219
VL  - 239
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm122-1-2017/
DO  - 10.4064/fm122-1-2017
LA  - en
ID  - 10_4064_fm122_1_2017
ER  - 
%0 Journal Article
%A Cameron Donnay Hill
%T On 0, 1-laws and asymptotics of definable sets in geometric Fraïssé classes
%J Fundamenta Mathematicae
%D 2017
%P 201-219
%V 239
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm122-1-2017/
%R 10.4064/fm122-1-2017
%G en
%F 10_4064_fm122_1_2017
Cameron Donnay Hill. On 0, 1-laws and asymptotics of definable sets in geometric Fraïssé classes. Fundamenta Mathematicae, Tome 239 (2017) no. 3, pp. 201-219. doi : 10.4064/fm122-1-2017. http://geodesic.mathdoc.fr/articles/10.4064/fm122-1-2017/

Cité par Sources :