Borel equivalence relations in the space of bounded operators
Fundamenta Mathematicae, Tome 237 (2017) no. 1, pp. 31-45
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider various notions of equivalence in the space of bounded operators on a Hilbert space, in particular modulo finite rank, modulo Schatten $p$-class, and modulo compact. Using Hjorth’s theory of turbulence, the latter two are shown to be not classifiable by countable structures, while the first is not reducible to the orbit equivalence relation of any Polish group action. The results for modulo finite rank and modulo compact operators are also shown for the restrictions of these equivalence relations to the space of projection operators.
Keywords:
consider various notions equivalence space bounded operators hilbert space particular modulo finite rank modulo schatten p class modulo compact using hjorth theory turbulence latter shown classifiable countable structures while first reducible orbit equivalence relation polish group action results modulo finite rank modulo compact operators shown restrictions these equivalence relations space projection operators
Affiliations des auteurs :
Iian B. Smythe 1
@article{10_4064_fm116_9_2016,
author = {Iian B. Smythe},
title = {Borel equivalence relations in the space of bounded operators},
journal = {Fundamenta Mathematicae},
pages = {31--45},
publisher = {mathdoc},
volume = {237},
number = {1},
year = {2017},
doi = {10.4064/fm116-9-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm116-9-2016/}
}
TY - JOUR AU - Iian B. Smythe TI - Borel equivalence relations in the space of bounded operators JO - Fundamenta Mathematicae PY - 2017 SP - 31 EP - 45 VL - 237 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm116-9-2016/ DO - 10.4064/fm116-9-2016 LA - en ID - 10_4064_fm116_9_2016 ER -
Iian B. Smythe. Borel equivalence relations in the space of bounded operators. Fundamenta Mathematicae, Tome 237 (2017) no. 1, pp. 31-45. doi: 10.4064/fm116-9-2016
Cité par Sources :