Commutative rings in which every proper ideal is maximal
Fundamenta Mathematicae, Tome 97 (1977) no. 3, pp. 229-231.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-97-3-229-231

Joachim Reineke 1

1
@article{10_4064_fm_97_3_229_231,
     author = {Joachim Reineke},
     title = {Commutative rings in which every proper ideal is maximal},
     journal = {Fundamenta Mathematicae},
     pages = {229--231},
     publisher = {mathdoc},
     volume = {97},
     number = {3},
     year = {1977},
     doi = {10.4064/fm-97-3-229-231},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-97-3-229-231/}
}
TY  - JOUR
AU  - Joachim Reineke
TI  - Commutative rings in which every proper ideal is maximal
JO  - Fundamenta Mathematicae
PY  - 1977
SP  - 229
EP  - 231
VL  - 97
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-97-3-229-231/
DO  - 10.4064/fm-97-3-229-231
LA  - en
ID  - 10_4064_fm_97_3_229_231
ER  - 
%0 Journal Article
%A Joachim Reineke
%T Commutative rings in which every proper ideal is maximal
%J Fundamenta Mathematicae
%D 1977
%P 229-231
%V 97
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-97-3-229-231/
%R 10.4064/fm-97-3-229-231
%G en
%F 10_4064_fm_97_3_229_231
Joachim Reineke. Commutative rings in which every proper ideal is maximal. Fundamenta Mathematicae, Tome 97 (1977) no. 3, pp. 229-231. doi : 10.4064/fm-97-3-229-231. http://geodesic.mathdoc.fr/articles/10.4064/fm-97-3-229-231/

Cité par Sources :