A class α and locally connected continua which can be ε-mapped onto a surface
Fundamenta Mathematicae, Tome 95 (1977) no. 3, pp. 201-222
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_fm_95_3_201_222,
author = {Hanna Patkowska},
title = {A class \ensuremath{\alpha} and locally connected continua which can be \ensuremath{\varepsilon}-mapped onto a surface},
journal = {Fundamenta Mathematicae},
pages = {201--222},
year = {1977},
volume = {95},
number = {3},
doi = {10.4064/fm-95-3-201-222},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-95-3-201-222/}
}
TY - JOUR AU - Hanna Patkowska TI - A class α and locally connected continua which can be ε-mapped onto a surface JO - Fundamenta Mathematicae PY - 1977 SP - 201 EP - 222 VL - 95 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-95-3-201-222/ DO - 10.4064/fm-95-3-201-222 LA - en ID - 10_4064_fm_95_3_201_222 ER -
Hanna Patkowska. A class α and locally connected continua which can be ε-mapped onto a surface. Fundamenta Mathematicae, Tome 95 (1977) no. 3, pp. 201-222. doi: 10.4064/fm-95-3-201-222
Cité par Sources :