A class α and locally connected continua which can be ε-mapped onto a surface
Fundamenta Mathematicae, Tome 95 (1977) no. 3, pp. 201-222.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-95-3-201-222

Hanna Patkowska 1

1
@article{10_4064_fm_95_3_201_222,
     author = {Hanna Patkowska},
     title = {A class \ensuremath{\alpha} and locally connected continua which can be \ensuremath{\varepsilon}-mapped onto a surface},
     journal = {Fundamenta Mathematicae},
     pages = {201--222},
     publisher = {mathdoc},
     volume = {95},
     number = {3},
     year = {1977},
     doi = {10.4064/fm-95-3-201-222},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-95-3-201-222/}
}
TY  - JOUR
AU  - Hanna Patkowska
TI  - A class α and locally connected continua which can be ε-mapped onto a surface
JO  - Fundamenta Mathematicae
PY  - 1977
SP  - 201
EP  - 222
VL  - 95
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-95-3-201-222/
DO  - 10.4064/fm-95-3-201-222
LA  - en
ID  - 10_4064_fm_95_3_201_222
ER  - 
%0 Journal Article
%A Hanna Patkowska
%T A class α and locally connected continua which can be ε-mapped onto a surface
%J Fundamenta Mathematicae
%D 1977
%P 201-222
%V 95
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-95-3-201-222/
%R 10.4064/fm-95-3-201-222
%G en
%F 10_4064_fm_95_3_201_222
Hanna Patkowska. A class α and locally connected continua which can be ε-mapped onto a surface. Fundamenta Mathematicae, Tome 95 (1977) no. 3, pp. 201-222. doi : 10.4064/fm-95-3-201-222. http://geodesic.mathdoc.fr/articles/10.4064/fm-95-3-201-222/

Cité par Sources :