Rings in which every proper right ideal is maximal
Fundamenta Mathematicae, Tome 91 (1976) no. 3, pp. 183-188.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-91-3-183-188

Jiang Luh 1

1
@article{10_4064_fm_91_3_183_188,
     author = {Jiang Luh},
     title = {Rings in which every proper right ideal is maximal},
     journal = {Fundamenta Mathematicae},
     pages = {183--188},
     publisher = {mathdoc},
     volume = {91},
     number = {3},
     year = {1976},
     doi = {10.4064/fm-91-3-183-188},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-91-3-183-188/}
}
TY  - JOUR
AU  - Jiang Luh
TI  - Rings in which every proper right ideal is maximal
JO  - Fundamenta Mathematicae
PY  - 1976
SP  - 183
EP  - 188
VL  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-91-3-183-188/
DO  - 10.4064/fm-91-3-183-188
LA  - en
ID  - 10_4064_fm_91_3_183_188
ER  - 
%0 Journal Article
%A Jiang Luh
%T Rings in which every proper right ideal is maximal
%J Fundamenta Mathematicae
%D 1976
%P 183-188
%V 91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-91-3-183-188/
%R 10.4064/fm-91-3-183-188
%G en
%F 10_4064_fm_91_3_183_188
Jiang Luh. Rings in which every proper right ideal is maximal. Fundamenta Mathematicae, Tome 91 (1976) no. 3, pp. 183-188. doi : 10.4064/fm-91-3-183-188. http://geodesic.mathdoc.fr/articles/10.4064/fm-91-3-183-188/

Cité par Sources :