A positional characterization of the (n-1)-dimensional Sierpiński curve in $S^n$ (η ≠ 4)
Fundamenta Mathematicae, Tome 79 (1973) no. 2, pp. 107-112
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_fm_79_2_107_112,
author = {J. Cannon},
title = {A positional characterization of the (n-1)-dimensional {Sierpi\'nski} curve in $S^n$ (\ensuremath{\eta} \ensuremath{\neq} 4)},
journal = {Fundamenta Mathematicae},
pages = {107--112},
publisher = {mathdoc},
volume = {79},
number = {2},
year = {1973},
doi = {10.4064/fm-79-2-107-112},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-79-2-107-112/}
}
TY - JOUR AU - J. Cannon TI - A positional characterization of the (n-1)-dimensional Sierpiński curve in $S^n$ (η ≠ 4) JO - Fundamenta Mathematicae PY - 1973 SP - 107 EP - 112 VL - 79 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-79-2-107-112/ DO - 10.4064/fm-79-2-107-112 LA - en ID - 10_4064_fm_79_2_107_112 ER -
%0 Journal Article %A J. Cannon %T A positional characterization of the (n-1)-dimensional Sierpiński curve in $S^n$ (η ≠ 4) %J Fundamenta Mathematicae %D 1973 %P 107-112 %V 79 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-79-2-107-112/ %R 10.4064/fm-79-2-107-112 %G en %F 10_4064_fm_79_2_107_112
J. Cannon. A positional characterization of the (n-1)-dimensional Sierpiński curve in $S^n$ (η ≠ 4). Fundamenta Mathematicae, Tome 79 (1973) no. 2, pp. 107-112. doi: 10.4064/fm-79-2-107-112
Cité par Sources :