A positional characterization of the (n-1)-dimensional Sierpiński curve in $S^n$ (η ≠ 4)
Fundamenta Mathematicae, Tome 79 (1973) no. 2, pp. 107-112.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-79-2-107-112

J. Cannon 1

1
@article{10_4064_fm_79_2_107_112,
     author = {J. Cannon},
     title = {A positional characterization of the (n-1)-dimensional {Sierpi\'nski} curve in $S^n$ (\ensuremath{\eta} \ensuremath{\neq} 4)},
     journal = {Fundamenta Mathematicae},
     pages = {107--112},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {1973},
     doi = {10.4064/fm-79-2-107-112},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-79-2-107-112/}
}
TY  - JOUR
AU  - J. Cannon
TI  - A positional characterization of the (n-1)-dimensional Sierpiński curve in $S^n$ (η ≠ 4)
JO  - Fundamenta Mathematicae
PY  - 1973
SP  - 107
EP  - 112
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-79-2-107-112/
DO  - 10.4064/fm-79-2-107-112
LA  - en
ID  - 10_4064_fm_79_2_107_112
ER  - 
%0 Journal Article
%A J. Cannon
%T A positional characterization of the (n-1)-dimensional Sierpiński curve in $S^n$ (η ≠ 4)
%J Fundamenta Mathematicae
%D 1973
%P 107-112
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-79-2-107-112/
%R 10.4064/fm-79-2-107-112
%G en
%F 10_4064_fm_79_2_107_112
J. Cannon. A positional characterization of the (n-1)-dimensional Sierpiński curve in $S^n$ (η ≠ 4). Fundamenta Mathematicae, Tome 79 (1973) no. 2, pp. 107-112. doi : 10.4064/fm-79-2-107-112. http://geodesic.mathdoc.fr/articles/10.4064/fm-79-2-107-112/

Cité par Sources :