Commutative rings in which every proper ideal is maximal
Fundamenta Mathematicae, Tome 71 (1971) no. 3, pp. 193-198.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-71-3-193-198

Fred Petricani 1

1
@article{10_4064_fm_71_3_193_198,
     author = {Fred Petricani},
     title = {Commutative rings in which every proper ideal is maximal},
     journal = {Fundamenta Mathematicae},
     pages = {193--198},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {1971},
     doi = {10.4064/fm-71-3-193-198},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-71-3-193-198/}
}
TY  - JOUR
AU  - Fred Petricani
TI  - Commutative rings in which every proper ideal is maximal
JO  - Fundamenta Mathematicae
PY  - 1971
SP  - 193
EP  - 198
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-71-3-193-198/
DO  - 10.4064/fm-71-3-193-198
LA  - en
ID  - 10_4064_fm_71_3_193_198
ER  - 
%0 Journal Article
%A Fred Petricani
%T Commutative rings in which every proper ideal is maximal
%J Fundamenta Mathematicae
%D 1971
%P 193-198
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-71-3-193-198/
%R 10.4064/fm-71-3-193-198
%G en
%F 10_4064_fm_71_3_193_198
Fred Petricani. Commutative rings in which every proper ideal is maximal. Fundamenta Mathematicae, Tome 71 (1971) no. 3, pp. 193-198. doi : 10.4064/fm-71-3-193-198. http://geodesic.mathdoc.fr/articles/10.4064/fm-71-3-193-198/

Cité par Sources :