Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_fm_65_2_147_151, author = {R. Osborne}, title = {Embedding {Cantor} sets in a manifold, {Part} {II:} {An} extension theorem for homeomorphisms on {Cantor} sets}, journal = {Fundamenta Mathematicae}, pages = {147--151}, publisher = {mathdoc}, volume = {65}, number = {2}, year = {1969}, doi = {10.4064/fm-65-2-147-151}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-65-2-147-151/} }
TY - JOUR AU - R. Osborne TI - Embedding Cantor sets in a manifold, Part II: An extension theorem for homeomorphisms on Cantor sets JO - Fundamenta Mathematicae PY - 1969 SP - 147 EP - 151 VL - 65 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-65-2-147-151/ DO - 10.4064/fm-65-2-147-151 LA - en ID - 10_4064_fm_65_2_147_151 ER -
%0 Journal Article %A R. Osborne %T Embedding Cantor sets in a manifold, Part II: An extension theorem for homeomorphisms on Cantor sets %J Fundamenta Mathematicae %D 1969 %P 147-151 %V 65 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-65-2-147-151/ %R 10.4064/fm-65-2-147-151 %G en %F 10_4064_fm_65_2_147_151
R. Osborne. Embedding Cantor sets in a manifold, Part II: An extension theorem for homeomorphisms on Cantor sets. Fundamenta Mathematicae, Tome 65 (1969) no. 2, pp. 147-151. doi : 10.4064/fm-65-2-147-151. http://geodesic.mathdoc.fr/articles/10.4064/fm-65-2-147-151/
Cité par Sources :