Product liftings and densities with lifting invariant and density invariant sections
Fundamenta Mathematicae, Tome 166 (2000) no. 3, pp. 281-303.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given two measure spaces equipped with liftings or densities (complete if liftings are considered) the existence of product liftings and densities with lifting invariant or density invariant sections is investigated. It is proved that if one of the marginal liftings is admissibly generated (a subclass of consistent liftings), then one can always find a product lifting which has the property that all sections determined by one of the marginal spaces are lifting invariant (Theorem 2.13). For a large class of measures Theorem 2.13 is the best possible (Theorem 4.3). When densities are considered, then one can always have a product density with measurable sections, but in the case of non-atomic complete marginal measures there exists no product density with all sections being density invariant. The results are then applied to stochastic processes.
DOI : 10.4064/fm-166-3-281-303

K. Musiał 1 ; W. Strauss 1 ; N. D. Macheras 1

1
@article{10_4064_fm_166_3_281_303,
     author = {K. Musia{\l} and W. Strauss and N. D. Macheras},
     title = {Product liftings and densities with lifting invariant and density invariant sections},
     journal = {Fundamenta Mathematicae},
     pages = {281--303},
     publisher = {mathdoc},
     volume = {166},
     number = {3},
     year = {2000},
     doi = {10.4064/fm-166-3-281-303},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-166-3-281-303/}
}
TY  - JOUR
AU  - K. Musiał
AU  - W. Strauss
AU  - N. D. Macheras
TI  - Product liftings and densities with lifting invariant and density invariant sections
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 281
EP  - 303
VL  - 166
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-166-3-281-303/
DO  - 10.4064/fm-166-3-281-303
LA  - en
ID  - 10_4064_fm_166_3_281_303
ER  - 
%0 Journal Article
%A K. Musiał
%A W. Strauss
%A N. D. Macheras
%T Product liftings and densities with lifting invariant and density invariant sections
%J Fundamenta Mathematicae
%D 2000
%P 281-303
%V 166
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-166-3-281-303/
%R 10.4064/fm-166-3-281-303
%G en
%F 10_4064_fm_166_3_281_303
K. Musiał; W. Strauss; N. D. Macheras. Product liftings and densities with lifting invariant and density invariant sections. Fundamenta Mathematicae, Tome 166 (2000) no. 3, pp. 281-303. doi : 10.4064/fm-166-3-281-303. http://geodesic.mathdoc.fr/articles/10.4064/fm-166-3-281-303/

Cité par Sources :