Vitali sets and Hamel bases that are Marczewski measurable
Fundamenta Mathematicae, Tome 166 (2000) no. 3, pp. 269-279
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We give examples of a Vitali set and a Hamel basis which are Marczewski measurable and perfectly dense. The Vitali set example answers a question posed by Jack Brown. We also show there is a Marczewski null Hamel basis for the reals, although a Vitali set cannot be Marczewski null. The proof of the existence of a Marczewski null Hamel basis for the plane is easier than for the reals and we give it first. We show that there is no easy way to get a Marczewski null Hamel basis for the reals from one for the plane by showing that there is no one-to-one additive Borel map from the plane to the reals.
Affiliations des auteurs :
Arnold W. Miller 1 ; Strashimir G. Popvassilev 1
@article{10_4064_fm_166_3_269_279,
author = {Arnold W. Miller and Strashimir G. Popvassilev},
title = {Vitali sets and {Hamel} bases that are {Marczewski} measurable},
journal = {Fundamenta Mathematicae},
pages = {269--279},
year = {2000},
volume = {166},
number = {3},
doi = {10.4064/fm-166-3-269-279},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-166-3-269-279/}
}
TY - JOUR AU - Arnold W. Miller AU - Strashimir G. Popvassilev TI - Vitali sets and Hamel bases that are Marczewski measurable JO - Fundamenta Mathematicae PY - 2000 SP - 269 EP - 279 VL - 166 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-166-3-269-279/ DO - 10.4064/fm-166-3-269-279 LA - en ID - 10_4064_fm_166_3_269_279 ER -
%0 Journal Article %A Arnold W. Miller %A Strashimir G. Popvassilev %T Vitali sets and Hamel bases that are Marczewski measurable %J Fundamenta Mathematicae %D 2000 %P 269-279 %V 166 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/fm-166-3-269-279/ %R 10.4064/fm-166-3-269-279 %G en %F 10_4064_fm_166_3_269_279
Arnold W. Miller; Strashimir G. Popvassilev. Vitali sets and Hamel bases that are Marczewski measurable. Fundamenta Mathematicae, Tome 166 (2000) no. 3, pp. 269-279. doi: 10.4064/fm-166-3-269-279
Cité par Sources :