The topology of the Banach–Mazur compactum
Fundamenta Mathematicae, Tome 166 (2000) no. 3, pp. 209-232.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let J(n) be the hyperspace of all centrally symmetric compact convex bodies $A ⊆ \Bbb R^n$, n ≥ 2, for which the ordinary Euclidean unit ball is the ellipsoid of maximal volume contained in A (the John ellipsoid). Let $J_0(n)$ be the complement of the unique O(n)-fixed point in J(n). We prove that: (1) the Banach-Mazur compactum BM(n) is homeomorphic to the orbit space J(n)/O(n) of the natural action of the orthogonal group O(n) on J(n); (2) J(n) is an O(n)-AR; (3) $J_0(2)/SO(2)$ is an Eilenberg-MacLane space $\bold K(\Bbb Q,2)$; (4) $BM_0(2) = J_0(2)/O(2)$ is noncontractible; (5) BM(2) is a nonhomogeneous absolute retract. Other models for BM(n) are established.
DOI : 10.4064/fm-166-3-209-232
Keywords: Banach-Mazur compactum, G-ANR, orbit space, Q-manifoldhomotopy type, Eilenberg-MacLane space $\bold K(\Bbb Q, 2)$

Sergey A. Antonyan 1

1
@article{10_4064_fm_166_3_209_232,
     author = {Sergey A. Antonyan},
     title = {The topology of the {Banach{\textendash}Mazur} compactum},
     journal = {Fundamenta Mathematicae},
     pages = {209--232},
     publisher = {mathdoc},
     volume = {166},
     number = {3},
     year = {2000},
     doi = {10.4064/fm-166-3-209-232},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-166-3-209-232/}
}
TY  - JOUR
AU  - Sergey A. Antonyan
TI  - The topology of the Banach–Mazur compactum
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 209
EP  - 232
VL  - 166
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-166-3-209-232/
DO  - 10.4064/fm-166-3-209-232
LA  - en
ID  - 10_4064_fm_166_3_209_232
ER  - 
%0 Journal Article
%A Sergey A. Antonyan
%T The topology of the Banach–Mazur compactum
%J Fundamenta Mathematicae
%D 2000
%P 209-232
%V 166
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-166-3-209-232/
%R 10.4064/fm-166-3-209-232
%G en
%F 10_4064_fm_166_3_209_232
Sergey A. Antonyan. The topology of the Banach–Mazur compactum. Fundamenta Mathematicae, Tome 166 (2000) no. 3, pp. 209-232. doi : 10.4064/fm-166-3-209-232. http://geodesic.mathdoc.fr/articles/10.4064/fm-166-3-209-232/

Cité par Sources :