The topology of the Banach–Mazur compactum
Fundamenta Mathematicae, Tome 166 (2000) no. 3, pp. 209-232
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let J(n) be the hyperspace of all centrally symmetric compact convex bodies $A ⊆ \Bbb R^n$, n ≥ 2, for which the ordinary Euclidean unit ball is the ellipsoid of maximal volume contained in A (the John ellipsoid). Let $J_0(n)$ be the complement of the unique O(n)-fixed point in J(n). We prove that: (1) the Banach-Mazur compactum BM(n) is homeomorphic to the orbit space J(n)/O(n) of the natural action of the orthogonal group O(n) on J(n); (2) J(n) is an O(n)-AR; (3) $J_0(2)/SO(2)$ is an Eilenberg-MacLane space $\bold K(\Bbb Q,2)$; (4) $BM_0(2) = J_0(2)/O(2)$ is noncontractible; (5) BM(2) is a nonhomogeneous absolute retract. Other models for BM(n) are established.
Keywords:
Banach-Mazur compactum, G-ANR, orbit space, Q-manifoldhomotopy type, Eilenberg-MacLane space $\bold K(\Bbb Q, 2)$
Affiliations des auteurs :
Sergey A. Antonyan 1
@article{10_4064_fm_166_3_209_232,
author = {Sergey A. Antonyan},
title = {The topology of the {Banach{\textendash}Mazur} compactum},
journal = {Fundamenta Mathematicae},
pages = {209--232},
year = {2000},
volume = {166},
number = {3},
doi = {10.4064/fm-166-3-209-232},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-166-3-209-232/}
}
Sergey A. Antonyan. The topology of the Banach–Mazur compactum. Fundamenta Mathematicae, Tome 166 (2000) no. 3, pp. 209-232. doi: 10.4064/fm-166-3-209-232
Cité par Sources :