Strong covering without squares
Fundamenta Mathematicae, Tome 166 (2000) no. 1, pp. 87-107.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let W be an inner model of ZFC. Let κ be a cardinal in V. We say that κ-covering holds between V and W iff for all X ∈ V with X ⊆ ON and V ⊨ |X| κ, there exists Y ∈ W such that X ⊆ Y ⊆ ON and V ⊨ |Y| κ. Strong κ-covering holds between V and W iff for every structure M ∈ V for some countable first-order language whose underlying set is some ordinal λ, and every X ∈ V with X ⊆ λ and V ⊨ |X| κ, there is Y ∈ W such that X ⊆ Y ≺ M and V ⊨ |Y| κ.   We prove that if κ is V-regular, $κ^+_V = κ^+_W$, and we have both κ-covering and $κ^+$-covering between W and V, then strong κ-covering holds. Next we show that we can drop the assumption of $κ^+$-covering at the expense of assuming some more absoluteness of cardinals and cofinalities between W and V, and that we can drop the assumption that $κ^+_W = κ^+_V$ and weaken the $κ^+$-covering assumption at the expense of assuming some structural facts about W (the existence of certain square sequences).
DOI : 10.4064/fm-166-1-2-87-107
Keywords: set theory, covering, strong covering lemma, pcf theory

Saharon Shelah 1

1
@article{10_4064_fm_166_1_2_87_107,
     author = {Saharon Shelah},
     title = {Strong covering without squares},
     journal = {Fundamenta Mathematicae},
     pages = {87--107},
     publisher = {mathdoc},
     volume = {166},
     number = {1},
     year = {2000},
     doi = {10.4064/fm-166-1-2-87-107},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-166-1-2-87-107/}
}
TY  - JOUR
AU  - Saharon Shelah
TI  - Strong covering without squares
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 87
EP  - 107
VL  - 166
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-166-1-2-87-107/
DO  - 10.4064/fm-166-1-2-87-107
LA  - en
ID  - 10_4064_fm_166_1_2_87_107
ER  - 
%0 Journal Article
%A Saharon Shelah
%T Strong covering without squares
%J Fundamenta Mathematicae
%D 2000
%P 87-107
%V 166
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-166-1-2-87-107/
%R 10.4064/fm-166-1-2-87-107
%G en
%F 10_4064_fm_166_1_2_87_107
Saharon Shelah. Strong covering without squares. Fundamenta Mathematicae, Tome 166 (2000) no. 1, pp. 87-107. doi : 10.4064/fm-166-1-2-87-107. http://geodesic.mathdoc.fr/articles/10.4064/fm-166-1-2-87-107/

Cité par Sources :