Cellularity of free products of Boolean algebras (or topologies)
Fundamenta Mathematicae, Tome 166 (2000) no. 1, pp. 153-208
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The aim this paper is to present an answer to Problem 1 of Monk [10], [11]. We do this by proving in particular that if μ is a strong limit singular cardinal, $θ = (2^{cf(μ)})^+$ and $2^μ = μ^+$ then there are Boolean algebras $\mathbb{B}_1,\mathbb{B}_2$ such that $c(\mathbb{B}_1) = μ, c(\mathbb{B}_2) θ but c(\mathbb{B}_1*\mathbb{B}_2)=μ^+$. Further we improve this result, deal with the method and the necessity of the assumptions. In particular we prove that if $\mathbb{B}$ is a ccc Boolean algebra and $μ^{ℶ_ω} ≤ λ = cf(λ) ≤ 2^μ$ then $\mathbb{B}$ satisfies the λ-Knaster condition (using the "revised GCH theorem").
Keywords:
set theory, pcf, Boolean algebras, cellularity, product, colourings
Affiliations des auteurs :
Saharon Shelah 1
@article{10_4064_fm_166_1_2_153_208,
author = {Saharon Shelah},
title = {Cellularity of free products of {Boolean} algebras (or topologies)},
journal = {Fundamenta Mathematicae},
pages = {153--208},
year = {2000},
volume = {166},
number = {1},
doi = {10.4064/fm-166-1-2-153-208},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-166-1-2-153-208/}
}
TY - JOUR AU - Saharon Shelah TI - Cellularity of free products of Boolean algebras (or topologies) JO - Fundamenta Mathematicae PY - 2000 SP - 153 EP - 208 VL - 166 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-166-1-2-153-208/ DO - 10.4064/fm-166-1-2-153-208 LA - en ID - 10_4064_fm_166_1_2_153_208 ER -
Saharon Shelah. Cellularity of free products of Boolean algebras (or topologies). Fundamenta Mathematicae, Tome 166 (2000) no. 1, pp. 153-208. doi: 10.4064/fm-166-1-2-153-208
Cité par Sources :