On a problem of Steve Kalikow
Fundamenta Mathematicae, Tome 166 (2000) no. 1, pp. 137-151
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The Kalikow problem for a pair (λ,κ) of cardinal numbers,λ > κ (in particular κ = 2) is whether we can map the family of ω-sequences from λ to the family of ω-sequences from κ in a very continuous manner. Namely, we demand that for η,ν ∈ ω we have: η, ν are almost equal if and only if their images are. We show consistency of the negative answer, e.g., for $ℵ_ω$ but we prove it for smaller cardinals. We indicate a close connection with the free subset property and its variants.
Mots-clés :
set theory, forcing, continuity, Kalikow, free subset
Affiliations des auteurs :
Saharon Shelah 1
@article{10_4064_fm_166_1_2_137_151,
author = {Saharon Shelah},
title = {On a problem of {Steve} {Kalikow}},
journal = {Fundamenta Mathematicae},
pages = {137--151},
year = {2000},
volume = {166},
number = {1},
doi = {10.4064/fm-166-1-2-137-151},
language = {pl},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-166-1-2-137-151/}
}
Saharon Shelah. On a problem of Steve Kalikow. Fundamenta Mathematicae, Tome 166 (2000) no. 1, pp. 137-151. doi: 10.4064/fm-166-1-2-137-151
Cité par Sources :