Covering of the null ideal may have countable cofinality
Fundamenta Mathematicae, Tome 166 (2000) no. 1, pp. 109-136.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that it is consistent that the covering number of the ideal of measure zero sets has countable cofinality.
DOI : 10.4064/fm-166-1-2-109-136
Keywords: null sets, cardinal invariants of the continuum, iterated forcing, ccc forcing

Saharon Shelah 1

1
@article{10_4064_fm_166_1_2_109_136,
     author = {Saharon Shelah},
     title = {Covering of the null ideal may have countable cofinality},
     journal = {Fundamenta Mathematicae},
     pages = {109--136},
     publisher = {mathdoc},
     volume = {166},
     number = {1},
     year = {2000},
     doi = {10.4064/fm-166-1-2-109-136},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-166-1-2-109-136/}
}
TY  - JOUR
AU  - Saharon Shelah
TI  - Covering of the null ideal may have countable cofinality
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 109
EP  - 136
VL  - 166
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-166-1-2-109-136/
DO  - 10.4064/fm-166-1-2-109-136
LA  - en
ID  - 10_4064_fm_166_1_2_109_136
ER  - 
%0 Journal Article
%A Saharon Shelah
%T Covering of the null ideal may have countable cofinality
%J Fundamenta Mathematicae
%D 2000
%P 109-136
%V 166
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-166-1-2-109-136/
%R 10.4064/fm-166-1-2-109-136
%G en
%F 10_4064_fm_166_1_2_109_136
Saharon Shelah. Covering of the null ideal may have countable cofinality. Fundamenta Mathematicae, Tome 166 (2000) no. 1, pp. 109-136. doi : 10.4064/fm-166-1-2-109-136. http://geodesic.mathdoc.fr/articles/10.4064/fm-166-1-2-109-136/

Cité par Sources :