A converse of the Arsenin–Kunugui theorem on Borel sets with σ-compact sections
Fundamenta Mathematicae, Tome 165 (2000) no. 3, pp. 191-202.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let f be a Borel measurable mapping of a Luzin (i.e. absolute Borel metric) space L onto a metric space M such that f(F) is a Borel subset of M if F is closed in L. We show that then $f^{-1}(y)$ is a $K_σ$ set for all except countably many y ∈ M, that M is also Luzin, and that the Borel classes of the sets f(F), F closed in L, are bounded by a fixed countable ordinal. This gives a converse of the classical theorem of Arsenin and Kunugui. As a particular case we get Taĭmanov's theorem saying that the image of a Luzin space under a closed continuous mapping is a Luzin space. The method is based on a parametrized version of a Hurewicz type theorem and on the use of the Jankov-von Neumann selection theorem.
DOI : 10.4064/fm-165-3-191-202
Keywords: $K_σ$ sections, Borel bimeasurability

P. Holický 1 ; M. Zelený 1

1
@article{10_4064_fm_165_3_191_202,
     author = {P. Holick\'y and M. Zelen\'y},
     title = {A converse of the {Arsenin{\textendash}Kunugui} theorem on {Borel} sets with \ensuremath{\sigma}-compact sections},
     journal = {Fundamenta Mathematicae},
     pages = {191--202},
     publisher = {mathdoc},
     volume = {165},
     number = {3},
     year = {2000},
     doi = {10.4064/fm-165-3-191-202},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-165-3-191-202/}
}
TY  - JOUR
AU  - P. Holický
AU  - M. Zelený
TI  - A converse of the Arsenin–Kunugui theorem on Borel sets with σ-compact sections
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 191
EP  - 202
VL  - 165
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-165-3-191-202/
DO  - 10.4064/fm-165-3-191-202
LA  - en
ID  - 10_4064_fm_165_3_191_202
ER  - 
%0 Journal Article
%A P. Holický
%A M. Zelený
%T A converse of the Arsenin–Kunugui theorem on Borel sets with σ-compact sections
%J Fundamenta Mathematicae
%D 2000
%P 191-202
%V 165
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-165-3-191-202/
%R 10.4064/fm-165-3-191-202
%G en
%F 10_4064_fm_165_3_191_202
P. Holický; M. Zelený. A converse of the Arsenin–Kunugui theorem on Borel sets with σ-compact sections. Fundamenta Mathematicae, Tome 165 (2000) no. 3, pp. 191-202. doi : 10.4064/fm-165-3-191-202. http://geodesic.mathdoc.fr/articles/10.4064/fm-165-3-191-202/

Cité par Sources :