A converse of the Arsenin–Kunugui theorem on Borel sets with σ-compact sections
Fundamenta Mathematicae, Tome 165 (2000) no. 3, pp. 191-202
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let f be a Borel measurable mapping of a Luzin (i.e. absolute Borel metric) space L onto a metric space M such that f(F) is a Borel subset of M if F is closed in L. We show that then $f^{-1}(y)$ is a $K_σ$ set for all except countably many y ∈ M, that M is also Luzin, and that the Borel classes of the sets f(F), F closed in L, are bounded by a fixed countable ordinal. This gives a converse of the classical theorem of Arsenin and Kunugui. As a particular case we get Taĭmanov's theorem saying that the image of a Luzin space under a closed continuous mapping is a Luzin space. The method is based on a parametrized version of a Hurewicz type theorem and on the use of the Jankov-von Neumann selection theorem.
Keywords:
$K_σ$ sections, Borel bimeasurability
Affiliations des auteurs :
P. Holický 1 ; M. Zelený 1
@article{10_4064_fm_165_3_191_202,
author = {P. Holick\'y and M. Zelen\'y},
title = {A converse of the {Arsenin{\textendash}Kunugui} theorem on {Borel} sets with \ensuremath{\sigma}-compact sections},
journal = {Fundamenta Mathematicae},
pages = {191--202},
publisher = {mathdoc},
volume = {165},
number = {3},
year = {2000},
doi = {10.4064/fm-165-3-191-202},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-165-3-191-202/}
}
TY - JOUR AU - P. Holický AU - M. Zelený TI - A converse of the Arsenin–Kunugui theorem on Borel sets with σ-compact sections JO - Fundamenta Mathematicae PY - 2000 SP - 191 EP - 202 VL - 165 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-165-3-191-202/ DO - 10.4064/fm-165-3-191-202 LA - en ID - 10_4064_fm_165_3_191_202 ER -
%0 Journal Article %A P. Holický %A M. Zelený %T A converse of the Arsenin–Kunugui theorem on Borel sets with σ-compact sections %J Fundamenta Mathematicae %D 2000 %P 191-202 %V 165 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-165-3-191-202/ %R 10.4064/fm-165-3-191-202 %G en %F 10_4064_fm_165_3_191_202
P. Holický; M. Zelený. A converse of the Arsenin–Kunugui theorem on Borel sets with σ-compact sections. Fundamenta Mathematicae, Tome 165 (2000) no. 3, pp. 191-202. doi: 10.4064/fm-165-3-191-202
Cité par Sources :