Trajectory of the turning point is dense for a co-σ-porous set of tent maps
Fundamenta Mathematicae, Tome 165 (2000) no. 2, pp. 95-123
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
It is known that for almost every (with respect to Lebesgue measure) a ∈ [√2,2] the forward trajectory of the turning point of the tent map $T_a$ with slope a is dense in the interval of transitivity of $T_a$. We prove that the complement of this set of parameters of full measure is σ-porous.
Affiliations des auteurs :
Karen Brucks 1 ; Zoltán Buczolich 1
@article{10_4064_fm_165_2_95_123,
author = {Karen Brucks and Zolt\'an Buczolich},
title = {Trajectory of the turning point is dense for a co-\ensuremath{\sigma}-porous set of tent maps},
journal = {Fundamenta Mathematicae},
pages = {95--123},
year = {2000},
volume = {165},
number = {2},
doi = {10.4064/fm-165-2-95-123},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-165-2-95-123/}
}
TY - JOUR AU - Karen Brucks AU - Zoltán Buczolich TI - Trajectory of the turning point is dense for a co-σ-porous set of tent maps JO - Fundamenta Mathematicae PY - 2000 SP - 95 EP - 123 VL - 165 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-165-2-95-123/ DO - 10.4064/fm-165-2-95-123 LA - en ID - 10_4064_fm_165_2_95_123 ER -
%0 Journal Article %A Karen Brucks %A Zoltán Buczolich %T Trajectory of the turning point is dense for a co-σ-porous set of tent maps %J Fundamenta Mathematicae %D 2000 %P 95-123 %V 165 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/fm-165-2-95-123/ %R 10.4064/fm-165-2-95-123 %G en %F 10_4064_fm_165_2_95_123
Karen Brucks; Zoltán Buczolich. Trajectory of the turning point is dense for a co-σ-porous set of tent maps. Fundamenta Mathematicae, Tome 165 (2000) no. 2, pp. 95-123. doi: 10.4064/fm-165-2-95-123
Cité par Sources :