Toeplitz matrices and convergence
Fundamenta Mathematicae, Tome 165 (2000) no. 2, pp. 175-189
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We investigate $||χ_\mathbb A,2||$, the minimum cardinality of a subset of $2^ω$ that cannot be made convergent by multiplication with a single matrix taken from $\mathbb A$, for different sets $\mathbb A$ of Toeplitz matrices, and show that for some sets $\mathbb A$ it coincides with the splitting number. We show that there is no Galois-Tukey connection from the chaos relation on the diagonal matrices to the chaos relation on the Toeplitz matrices with the identity on $2^ω$ as first component. With Suslin c.c.c. forcing we show that $||χ_\mathbb M,2||$ $\gb ∙ \gs$ is consistent relative to ZFC.
@article{10_4064_fm_165_2_175_189,
author = {Heike Mildenberger},
title = {Toeplitz matrices and convergence},
journal = {Fundamenta Mathematicae},
pages = {175--189},
year = {2000},
volume = {165},
number = {2},
doi = {10.4064/fm-165-2-175-189},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-165-2-175-189/}
}
Heike Mildenberger. Toeplitz matrices and convergence. Fundamenta Mathematicae, Tome 165 (2000) no. 2, pp. 175-189. doi: 10.4064/fm-165-2-175-189
Cité par Sources :