Toeplitz matrices and convergence
Fundamenta Mathematicae, Tome 165 (2000) no. 2, pp. 175-189.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate $||χ_\mathbb A,2||$, the minimum cardinality of a subset of $2^ω$ that cannot be made convergent by multiplication with a single matrix taken from $\mathbb A$, for different sets $\mathbb A$ of Toeplitz matrices, and show that for some sets $\mathbb A$ it coincides with the splitting number. We show that there is no Galois-Tukey connection from the chaos relation on the diagonal matrices to the chaos relation on the Toeplitz matrices with the identity on $2^ω$ as first component. With Suslin c.c.c. forcing we show that $||χ_\mathbb M,2||$ $\gb ∙ \gs$ is consistent relative to ZFC.
DOI : 10.4064/fm-165-2-175-189

Heike Mildenberger 1

1
@article{10_4064_fm_165_2_175_189,
     author = {Heike Mildenberger},
     title = {Toeplitz matrices and convergence},
     journal = {Fundamenta Mathematicae},
     pages = {175--189},
     publisher = {mathdoc},
     volume = {165},
     number = {2},
     year = {2000},
     doi = {10.4064/fm-165-2-175-189},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-165-2-175-189/}
}
TY  - JOUR
AU  - Heike Mildenberger
TI  - Toeplitz matrices and convergence
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 175
EP  - 189
VL  - 165
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-165-2-175-189/
DO  - 10.4064/fm-165-2-175-189
LA  - en
ID  - 10_4064_fm_165_2_175_189
ER  - 
%0 Journal Article
%A Heike Mildenberger
%T Toeplitz matrices and convergence
%J Fundamenta Mathematicae
%D 2000
%P 175-189
%V 165
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-165-2-175-189/
%R 10.4064/fm-165-2-175-189
%G en
%F 10_4064_fm_165_2_175_189
Heike Mildenberger. Toeplitz matrices and convergence. Fundamenta Mathematicae, Tome 165 (2000) no. 2, pp. 175-189. doi : 10.4064/fm-165-2-175-189. http://geodesic.mathdoc.fr/articles/10.4064/fm-165-2-175-189/

Cité par Sources :