On the generalized Massey–Rolfsen invariant for link maps
Fundamenta Mathematicae, Tome 165 (2000) no. 1, pp. 1-15
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For $K = K_1⊔...⊔K_s$ and a link map $f:K → ℝ^m$ let $K^∼ = ⊔_{i j} K_i × K_j$, define a map $f^∼ : K^∼ → S^{m - 1}$ by $f^∼(x, y) = (fx - fy)/|fx - fy|$ and a (generalized) Massey-Rolfsen invariant $α(f) ∈ π^{m - 1}(K)$ to be the homotopy class of $f^∼$. We prove that for a polyhedron K of dimension ≤ m - 2 under certain (weakened metastable) dimension restrictions, α is an onto or a 1 - 1 map from the set of link maps $f:K → ℝ^m$ up to link concordance to $π^{m - 1}(K^∼)$. If $K_1,...,K_s$ are closed highly homologically connected manifolds of dimension $p_1,...,p_s$ (in particular, homology spheres), then $π^{m-1}(K^∼)≅⊕_{i j} π^S_{p_i + p_j - m + 1}$.
Keywords:
deleted product, Massey-Rolfsen invariant, link maps, link homotopy, stable homotopy group, double suspension, codimension two, highly connected manifolds
Affiliations des auteurs :
A. Skopenkov 1
@article{10_4064_fm_165_1_1_15,
author = {A. Skopenkov},
title = {On the generalized {Massey{\textendash}Rolfsen} invariant for link maps},
journal = {Fundamenta Mathematicae},
pages = {1--15},
publisher = {mathdoc},
volume = {165},
number = {1},
year = {2000},
doi = {10.4064/fm-165-1-1-15},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-165-1-1-15/}
}
TY - JOUR AU - A. Skopenkov TI - On the generalized Massey–Rolfsen invariant for link maps JO - Fundamenta Mathematicae PY - 2000 SP - 1 EP - 15 VL - 165 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-165-1-1-15/ DO - 10.4064/fm-165-1-1-15 LA - en ID - 10_4064_fm_165_1_1_15 ER -
A. Skopenkov. On the generalized Massey–Rolfsen invariant for link maps. Fundamenta Mathematicae, Tome 165 (2000) no. 1, pp. 1-15. doi: 10.4064/fm-165-1-1-15
Cité par Sources :