On the generalized Massey–Rolfsen invariant for link maps
Fundamenta Mathematicae, Tome 165 (2000) no. 1, pp. 1-15.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For $K = K_1⊔...⊔K_s$ and a link map $f:K → ℝ^m$ let $K^∼ = ⊔_{i j} K_i × K_j$, define a map $f^∼ : K^∼ → S^{m - 1}$ by $f^∼(x, y) = (fx - fy)/|fx - fy|$ and a (generalized) Massey-Rolfsen invariant $α(f) ∈ π^{m - 1}(K)$ to be the homotopy class of $f^∼$. We prove that for a polyhedron K of dimension ≤ m - 2 under certain (weakened metastable) dimension restrictions, α is an onto or a 1 - 1 map from the set of link maps $f:K → ℝ^m$ up to link concordance to $π^{m - 1}(K^∼)$. If $K_1,...,K_s$ are closed highly homologically connected manifolds of dimension $p_1,...,p_s$ (in particular, homology spheres), then $π^{m-1}(K^∼)≅⊕_{i j} π^S_{p_i + p_j - m + 1}$.
DOI : 10.4064/fm-165-1-1-15
Keywords: deleted product, Massey-Rolfsen invariant, link maps, link homotopy, stable homotopy group, double suspension, codimension two, highly connected manifolds

A. Skopenkov 1

1
@article{10_4064_fm_165_1_1_15,
     author = {A. Skopenkov},
     title = {On the generalized {Massey{\textendash}Rolfsen} invariant for link maps},
     journal = {Fundamenta Mathematicae},
     pages = {1--15},
     publisher = {mathdoc},
     volume = {165},
     number = {1},
     year = {2000},
     doi = {10.4064/fm-165-1-1-15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-165-1-1-15/}
}
TY  - JOUR
AU  - A. Skopenkov
TI  - On the generalized Massey–Rolfsen invariant for link maps
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 1
EP  - 15
VL  - 165
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-165-1-1-15/
DO  - 10.4064/fm-165-1-1-15
LA  - en
ID  - 10_4064_fm_165_1_1_15
ER  - 
%0 Journal Article
%A A. Skopenkov
%T On the generalized Massey–Rolfsen invariant for link maps
%J Fundamenta Mathematicae
%D 2000
%P 1-15
%V 165
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-165-1-1-15/
%R 10.4064/fm-165-1-1-15
%G en
%F 10_4064_fm_165_1_1_15
A. Skopenkov. On the generalized Massey–Rolfsen invariant for link maps. Fundamenta Mathematicae, Tome 165 (2000) no. 1, pp. 1-15. doi : 10.4064/fm-165-1-1-15. http://geodesic.mathdoc.fr/articles/10.4064/fm-165-1-1-15/

Cité par Sources :