Gaussian automorphisms whose ergodic self-joinings are Gaussian
Fundamenta Mathematicae, Tome 164 (2000) no. 3, pp. 253-293.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study ergodic properties of the class of Gaussian automorphisms whose ergodic self-joinings remain Gaussian. For such automorphisms we describe the structure of their factors and of their centralizer. We show that Gaussian automorphisms with simple spectrum belong to this class.  We prove a new sufficient condition for non-disjointness of automorphisms giving rise to a better understanding of Furstenberg's problem relating disjointness to the lack of common factors. This and an elaborate study of isomorphisms between classical factors of Gaussian automorphisms allow us to give a complete solution of the disjointness problem between a Gaussian automorphism whose ergodic self-joinings remain Gaussian and an arbitrary Gaussian automorphism.
DOI : 10.4064/fm-164-3-253-293

M. Lemańczyk 1 ; F. Parreau 1 ; J.-P. Thouvenot 1

1
@article{10_4064_fm_164_3_253_293,
     author = {M. Lema\'nczyk and F. Parreau and J.-P. Thouvenot},
     title = {Gaussian automorphisms whose ergodic self-joinings are {Gaussian}},
     journal = {Fundamenta Mathematicae},
     pages = {253--293},
     publisher = {mathdoc},
     volume = {164},
     number = {3},
     year = {2000},
     doi = {10.4064/fm-164-3-253-293},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-164-3-253-293/}
}
TY  - JOUR
AU  - M. Lemańczyk
AU  - F. Parreau
AU  - J.-P. Thouvenot
TI  - Gaussian automorphisms whose ergodic self-joinings are Gaussian
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 253
EP  - 293
VL  - 164
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-164-3-253-293/
DO  - 10.4064/fm-164-3-253-293
LA  - en
ID  - 10_4064_fm_164_3_253_293
ER  - 
%0 Journal Article
%A M. Lemańczyk
%A F. Parreau
%A J.-P. Thouvenot
%T Gaussian automorphisms whose ergodic self-joinings are Gaussian
%J Fundamenta Mathematicae
%D 2000
%P 253-293
%V 164
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-164-3-253-293/
%R 10.4064/fm-164-3-253-293
%G en
%F 10_4064_fm_164_3_253_293
M. Lemańczyk; F. Parreau; J.-P. Thouvenot. Gaussian automorphisms whose ergodic self-joinings are Gaussian. Fundamenta Mathematicae, Tome 164 (2000) no. 3, pp. 253-293. doi : 10.4064/fm-164-3-253-293. http://geodesic.mathdoc.fr/articles/10.4064/fm-164-3-253-293/

Cité par Sources :