Knots in $S^2 \times S^1$ derived from Sym(2, ℝ)
Fundamenta Mathematicae, Tome 164 (2000) no. 3, pp. 241-252
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We realize closed geodesics on the real conformal compactification of the space V = Sym(2, ℝ) of all 2 × 2 real symmetric matrices as knots or 2-component links in $S^2 × S^1$ and show that these knots or links have certain types of symmetry of period 2.
Keywords:
geodesic, symmetric matrix, Shilov boundary, 2-periodic knot
Affiliations des auteurs :
Sang Youl Lee 1 ; Yongdo Lim 1 ; Chan-Young Park 1
@article{10_4064_fm_164_3_241_252,
author = {Sang Youl Lee and Yongdo Lim and Chan-Young Park},
title = {Knots in $S^2 \times S^1$ derived from {Sym(2,} {\ensuremath{\mathbb{R}})}},
journal = {Fundamenta Mathematicae},
pages = {241--252},
year = {2000},
volume = {164},
number = {3},
doi = {10.4064/fm-164-3-241-252},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-164-3-241-252/}
}
TY - JOUR AU - Sang Youl Lee AU - Yongdo Lim AU - Chan-Young Park TI - Knots in $S^2 \times S^1$ derived from Sym(2, ℝ) JO - Fundamenta Mathematicae PY - 2000 SP - 241 EP - 252 VL - 164 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-164-3-241-252/ DO - 10.4064/fm-164-3-241-252 LA - en ID - 10_4064_fm_164_3_241_252 ER -
%0 Journal Article %A Sang Youl Lee %A Yongdo Lim %A Chan-Young Park %T Knots in $S^2 \times S^1$ derived from Sym(2, ℝ) %J Fundamenta Mathematicae %D 2000 %P 241-252 %V 164 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/fm-164-3-241-252/ %R 10.4064/fm-164-3-241-252 %G en %F 10_4064_fm_164_3_241_252
Sang Youl Lee; Yongdo Lim; Chan-Young Park. Knots in $S^2 \times S^1$ derived from Sym(2, ℝ). Fundamenta Mathematicae, Tome 164 (2000) no. 3, pp. 241-252. doi: 10.4064/fm-164-3-241-252
Cité par Sources :