Borel and Baire reducibility
Fundamenta Mathematicae, Tome 164 (2000) no. 1, pp. 61-69.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that a Borel equivalence relation is classifiable by countable structures if and only if it is Borel reducible to a countable level of the hereditarily countable sets. We also prove the following result which was originally claimed in [FS89]: the zero density ideal of sets of natural numbers is not classifiable by countable structures.
DOI : 10.4064/fm-164-1-61-69

Harvey M. Friedman 1

1
@article{10_4064_fm_164_1_61_69,
     author = {Harvey M. Friedman},
     title = {Borel and {Baire} reducibility},
     journal = {Fundamenta Mathematicae},
     pages = {61--69},
     publisher = {mathdoc},
     volume = {164},
     number = {1},
     year = {2000},
     doi = {10.4064/fm-164-1-61-69},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-164-1-61-69/}
}
TY  - JOUR
AU  - Harvey M. Friedman
TI  - Borel and Baire reducibility
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 61
EP  - 69
VL  - 164
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-164-1-61-69/
DO  - 10.4064/fm-164-1-61-69
LA  - en
ID  - 10_4064_fm_164_1_61_69
ER  - 
%0 Journal Article
%A Harvey M. Friedman
%T Borel and Baire reducibility
%J Fundamenta Mathematicae
%D 2000
%P 61-69
%V 164
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-164-1-61-69/
%R 10.4064/fm-164-1-61-69
%G en
%F 10_4064_fm_164_1_61_69
Harvey M. Friedman. Borel and Baire reducibility. Fundamenta Mathematicae, Tome 164 (2000) no. 1, pp. 61-69. doi : 10.4064/fm-164-1-61-69. http://geodesic.mathdoc.fr/articles/10.4064/fm-164-1-61-69/

Cité par Sources :