Trees of visible components in the Mandelbrot set
Fundamenta Mathematicae, Tome 164 (2000) no. 1, pp. 41-60
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We discuss the tree structures of the sublimbs of the Mandelbrot set M, using internal addresses of hyperbolic components. We find a counterexample to a conjecture by Eike Lau and Dierk Schleicher concerning topological equivalence between different trees of visible components, and give a new proof to a theorem of theirs concerning the periods of hyperbolic components in various trees.
@article{10_4064_fm_164_1_41_60,
author = {Virpi Kauko},
title = {Trees of visible components in the {Mandelbrot} set},
journal = {Fundamenta Mathematicae},
pages = {41--60},
year = {2000},
volume = {164},
number = {1},
doi = {10.4064/fm-164-1-41-60},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-164-1-41-60/}
}
Virpi Kauko. Trees of visible components in the Mandelbrot set. Fundamenta Mathematicae, Tome 164 (2000) no. 1, pp. 41-60. doi: 10.4064/fm-164-1-41-60
Cité par Sources :