Trees of visible components in the Mandelbrot set
Fundamenta Mathematicae, Tome 164 (2000) no. 1, pp. 41-60.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We discuss the tree structures of the sublimbs of the Mandelbrot set M, using internal addresses of hyperbolic components. We find a counterexample to a conjecture by Eike Lau and Dierk Schleicher concerning topological equivalence between different trees of visible components, and give a new proof to a theorem of theirs concerning the periods of hyperbolic components in various trees.
DOI : 10.4064/fm-164-1-41-60

Virpi Kauko 1

1
@article{10_4064_fm_164_1_41_60,
     author = {Virpi Kauko},
     title = {Trees of visible components in the {Mandelbrot} set},
     journal = {Fundamenta Mathematicae},
     pages = {41--60},
     publisher = {mathdoc},
     volume = {164},
     number = {1},
     year = {2000},
     doi = {10.4064/fm-164-1-41-60},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-164-1-41-60/}
}
TY  - JOUR
AU  - Virpi Kauko
TI  - Trees of visible components in the Mandelbrot set
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 41
EP  - 60
VL  - 164
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-164-1-41-60/
DO  - 10.4064/fm-164-1-41-60
LA  - en
ID  - 10_4064_fm_164_1_41_60
ER  - 
%0 Journal Article
%A Virpi Kauko
%T Trees of visible components in the Mandelbrot set
%J Fundamenta Mathematicae
%D 2000
%P 41-60
%V 164
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-164-1-41-60/
%R 10.4064/fm-164-1-41-60
%G en
%F 10_4064_fm_164_1_41_60
Virpi Kauko. Trees of visible components in the Mandelbrot set. Fundamenta Mathematicae, Tome 164 (2000) no. 1, pp. 41-60. doi : 10.4064/fm-164-1-41-60. http://geodesic.mathdoc.fr/articles/10.4064/fm-164-1-41-60/

Cité par Sources :