Trees of visible components in the Mandelbrot set
Fundamenta Mathematicae, Tome 164 (2000) no. 1, pp. 41-60
We discuss the tree structures of the sublimbs of the Mandelbrot set M, using internal addresses of hyperbolic components. We find a counterexample to a conjecture by Eike Lau and Dierk Schleicher concerning topological equivalence between different trees of visible components, and give a new proof to a theorem of theirs concerning the periods of hyperbolic components in various trees.
@article{10_4064_fm_164_1_41_60,
author = {Virpi Kauko},
title = {Trees of visible components in the {Mandelbrot} set},
journal = {Fundamenta Mathematicae},
pages = {41--60},
year = {2000},
volume = {164},
number = {1},
doi = {10.4064/fm-164-1-41-60},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-164-1-41-60/}
}
Virpi Kauko. Trees of visible components in the Mandelbrot set. Fundamenta Mathematicae, Tome 164 (2000) no. 1, pp. 41-60. doi: 10.4064/fm-164-1-41-60
Cité par Sources :