Wildness in the product groups
Fundamenta Mathematicae, Tome 164 (2000) no. 1, pp. 1-33.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Non-abelian Polish groups arising as countable products of countable groups can be tame in arbitrarily complicated ways. This contrasts with some results of Solecki who revealed a very different picture in the abelian case.
DOI : 10.4064/fm-164-1-1-33
Keywords: group actions, Polish groups, group trees, product groups, permutation groups, Borel equivalence relations

G. Hjorth 1

1
@article{10_4064_fm_164_1_1_33,
     author = {G. Hjorth},
     title = {Wildness in the product groups},
     journal = {Fundamenta Mathematicae},
     pages = {1--33},
     publisher = {mathdoc},
     volume = {164},
     number = {1},
     year = {2000},
     doi = {10.4064/fm-164-1-1-33},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-164-1-1-33/}
}
TY  - JOUR
AU  - G. Hjorth
TI  - Wildness in the product groups
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 1
EP  - 33
VL  - 164
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-164-1-1-33/
DO  - 10.4064/fm-164-1-1-33
LA  - en
ID  - 10_4064_fm_164_1_1_33
ER  - 
%0 Journal Article
%A G. Hjorth
%T Wildness in the product groups
%J Fundamenta Mathematicae
%D 2000
%P 1-33
%V 164
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-164-1-1-33/
%R 10.4064/fm-164-1-1-33
%G en
%F 10_4064_fm_164_1_1_33
G. Hjorth. Wildness in the product groups. Fundamenta Mathematicae, Tome 164 (2000) no. 1, pp. 1-33. doi : 10.4064/fm-164-1-1-33. http://geodesic.mathdoc.fr/articles/10.4064/fm-164-1-1-33/

Cité par Sources :