On biaccessible points in Julia sets of polynomials
Fundamenta Mathematicae, Tome 163 (2000) no. 3, pp. 277-286.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let f be a polynomial of one complex variable so that its Julia set is connected. We show that the harmonic (Brolin) measure of the set of biaccessible points in J is zero except for the case when J is an interval.
DOI : 10.4064/fm-163-3-277-286

Anna Zdunik 1

1
@article{10_4064_fm_163_3_277_286,
     author = {Anna Zdunik},
     title = {On biaccessible points in {Julia} sets of polynomials},
     journal = {Fundamenta Mathematicae},
     pages = {277--286},
     publisher = {mathdoc},
     volume = {163},
     number = {3},
     year = {2000},
     doi = {10.4064/fm-163-3-277-286},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-163-3-277-286/}
}
TY  - JOUR
AU  - Anna Zdunik
TI  - On biaccessible points in Julia sets of polynomials
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 277
EP  - 286
VL  - 163
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-163-3-277-286/
DO  - 10.4064/fm-163-3-277-286
LA  - en
ID  - 10_4064_fm_163_3_277_286
ER  - 
%0 Journal Article
%A Anna Zdunik
%T On biaccessible points in Julia sets of polynomials
%J Fundamenta Mathematicae
%D 2000
%P 277-286
%V 163
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-163-3-277-286/
%R 10.4064/fm-163-3-277-286
%G en
%F 10_4064_fm_163_3_277_286
Anna Zdunik. On biaccessible points in Julia sets of polynomials. Fundamenta Mathematicae, Tome 163 (2000) no. 3, pp. 277-286. doi : 10.4064/fm-163-3-277-286. http://geodesic.mathdoc.fr/articles/10.4064/fm-163-3-277-286/

Cité par Sources :