On biaccessible points in Julia sets of polynomials
Fundamenta Mathematicae, Tome 163 (2000) no. 3, pp. 277-286
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let f be a polynomial of one complex variable so that its Julia set is connected. We show that the harmonic (Brolin) measure of the set of biaccessible points in J is zero except for the case when J is an interval.
@article{10_4064_fm_163_3_277_286,
author = {Anna Zdunik},
title = {On biaccessible points in {Julia} sets of polynomials},
journal = {Fundamenta Mathematicae},
pages = {277--286},
publisher = {mathdoc},
volume = {163},
number = {3},
year = {2000},
doi = {10.4064/fm-163-3-277-286},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-163-3-277-286/}
}
TY - JOUR AU - Anna Zdunik TI - On biaccessible points in Julia sets of polynomials JO - Fundamenta Mathematicae PY - 2000 SP - 277 EP - 286 VL - 163 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-163-3-277-286/ DO - 10.4064/fm-163-3-277-286 LA - en ID - 10_4064_fm_163_3_277_286 ER -
Anna Zdunik. On biaccessible points in Julia sets of polynomials. Fundamenta Mathematicae, Tome 163 (2000) no. 3, pp. 277-286. doi: 10.4064/fm-163-3-277-286
Cité par Sources :