Filters and sequences
Fundamenta Mathematicae, Tome 163 (2000) no. 3, pp. 215-228.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider two situations which relate properties of filters with properties of the limit operators with respect to these filters. In the first one, we show that the space of sequences having limits with respect to a $Π^0_3$ filter is itself $Π^0_3$ and therefore, by a result of Dobrowolski and Marciszewski, such spaces are topologically indistinguishable. This answers a question of Dobrowolski and Marciszewski. In the second one, we characterize universally measurable filters which fulfill Fatou's lemma.
DOI : 10.4064/fm-163-3-215-228
Keywords: filters, separation property, Fatou's lemma

Sławomir Solecki 1

1
@article{10_4064_fm_163_3_215_228,
     author = {S{\l}awomir Solecki},
     title = {Filters and sequences},
     journal = {Fundamenta Mathematicae},
     pages = {215--228},
     publisher = {mathdoc},
     volume = {163},
     number = {3},
     year = {2000},
     doi = {10.4064/fm-163-3-215-228},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-163-3-215-228/}
}
TY  - JOUR
AU  - Sławomir Solecki
TI  - Filters and sequences
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 215
EP  - 228
VL  - 163
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-163-3-215-228/
DO  - 10.4064/fm-163-3-215-228
LA  - en
ID  - 10_4064_fm_163_3_215_228
ER  - 
%0 Journal Article
%A Sławomir Solecki
%T Filters and sequences
%J Fundamenta Mathematicae
%D 2000
%P 215-228
%V 163
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-163-3-215-228/
%R 10.4064/fm-163-3-215-228
%G en
%F 10_4064_fm_163_3_215_228
Sławomir Solecki. Filters and sequences. Fundamenta Mathematicae, Tome 163 (2000) no. 3, pp. 215-228. doi : 10.4064/fm-163-3-215-228. http://geodesic.mathdoc.fr/articles/10.4064/fm-163-3-215-228/

Cité par Sources :