Spectral isomorphisms of Morse flows
Fundamenta Mathematicae, Tome 163 (2000) no. 3, pp. 193-213
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A combinatorial description of spectral isomorphisms between Morse flows is provided. We introduce the notion of a regular spectral isomorphism and we study some invariants of such isomorphisms. In the case of Morse cocycles taking values in $G = ℤ_p$, where p is a prime, each spectral isomorphism is regular. The same holds true for arbitrary finite abelian groups under an additional combinatorial condition of asymmetry in the defining Morse sequence, and for Morse flows of rank one. Rank one is shown to be a spectral invariant in the class of Morse flows.
Keywords:
Morse sequence, spectral isomorphism
Affiliations des auteurs :
T. Downarowicz 1 ; J. Kwiatkowski 1 ; Y. Lacroix 1
@article{10_4064_fm_163_3_193_213,
author = {T. Downarowicz and J. Kwiatkowski and Y. Lacroix},
title = {Spectral isomorphisms of {Morse} flows},
journal = {Fundamenta Mathematicae},
pages = {193--213},
year = {2000},
volume = {163},
number = {3},
doi = {10.4064/fm-163-3-193-213},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-163-3-193-213/}
}
TY - JOUR AU - T. Downarowicz AU - J. Kwiatkowski AU - Y. Lacroix TI - Spectral isomorphisms of Morse flows JO - Fundamenta Mathematicae PY - 2000 SP - 193 EP - 213 VL - 163 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-163-3-193-213/ DO - 10.4064/fm-163-3-193-213 LA - en ID - 10_4064_fm_163_3_193_213 ER -
T. Downarowicz; J. Kwiatkowski; Y. Lacroix. Spectral isomorphisms of Morse flows. Fundamenta Mathematicae, Tome 163 (2000) no. 3, pp. 193-213. doi: 10.4064/fm-163-3-193-213
Cité par Sources :