Minimal periods of maps of rational exterior spaces
Fundamenta Mathematicae, Tome 163 (2000) no. 2, pp. 99-115
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The problem of description of the set Per(f) of all minimal periods of a self-map f:X → X is studied. If X is a rational exterior space (e.g. a compact Lie group) then there exists a description of the set of minimal periods analogous to that for a torus map given by Jiang and Llibre. Our approach is based on the Haibao formula for the Lefschetz number of a self-map of a rational exterior space.
Keywords:
periodic points, minimal period, cohomology algebra, Lefschetz number, transversal map
Affiliations des auteurs :
Grzegorz Graff 1
@article{10_4064_fm_163_2_99_115,
author = {Grzegorz Graff},
title = {Minimal periods of maps of rational exterior spaces},
journal = {Fundamenta Mathematicae},
pages = {99--115},
year = {2000},
volume = {163},
number = {2},
doi = {10.4064/fm-163-2-99-115},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-99-115/}
}
Grzegorz Graff. Minimal periods of maps of rational exterior spaces. Fundamenta Mathematicae, Tome 163 (2000) no. 2, pp. 99-115. doi: 10.4064/fm-163-2-99-115
Cité par Sources :