Minimal periods of maps of rational exterior spaces
Fundamenta Mathematicae, Tome 163 (2000) no. 2, pp. 99-115.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The problem of description of the set Per(f) of all minimal periods of a self-map f:X → X is studied. If X is a rational exterior space (e.g. a compact Lie group) then there exists a description of the set of minimal periods analogous to that for a torus map given by Jiang and Llibre. Our approach is based on the Haibao formula for the Lefschetz number of a self-map of a rational exterior space.
DOI : 10.4064/fm-163-2-99-115
Keywords: periodic points, minimal period, cohomology algebra, Lefschetz number, transversal map

Grzegorz Graff 1

1
@article{10_4064_fm_163_2_99_115,
     author = {Grzegorz Graff},
     title = {Minimal periods of maps of rational exterior spaces},
     journal = {Fundamenta Mathematicae},
     pages = {99--115},
     publisher = {mathdoc},
     volume = {163},
     number = {2},
     year = {2000},
     doi = {10.4064/fm-163-2-99-115},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-99-115/}
}
TY  - JOUR
AU  - Grzegorz Graff
TI  - Minimal periods of maps of rational exterior spaces
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 99
EP  - 115
VL  - 163
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-99-115/
DO  - 10.4064/fm-163-2-99-115
LA  - en
ID  - 10_4064_fm_163_2_99_115
ER  - 
%0 Journal Article
%A Grzegorz Graff
%T Minimal periods of maps of rational exterior spaces
%J Fundamenta Mathematicae
%D 2000
%P 99-115
%V 163
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-99-115/
%R 10.4064/fm-163-2-99-115
%G en
%F 10_4064_fm_163_2_99_115
Grzegorz Graff. Minimal periods of maps of rational exterior spaces. Fundamenta Mathematicae, Tome 163 (2000) no. 2, pp. 99-115. doi : 10.4064/fm-163-2-99-115. http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-99-115/

Cité par Sources :