The measure algebra does not always embed
Fundamenta Mathematicae, Tome 163 (2000) no. 2, pp. 163-176

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The Open Colouring Axiom implies that the measure algebra cannot be embedded into P(ℕ)/fin. We also discuss errors in previous results on the embeddability of the measure algebra.
DOI : 10.4064/fm-163-2-163-176
Keywords: measure algebra, embedding, Open Colouring Axiom, P(ℕ)/fin

Alan Dow 1 ; Klaas Pieter Hart 1

1
@article{10_4064_fm_163_2_163_176,
     author = {Alan Dow and Klaas Pieter Hart},
     title = {The measure algebra does not always embed},
     journal = {Fundamenta Mathematicae},
     pages = {163--176},
     publisher = {mathdoc},
     volume = {163},
     number = {2},
     year = {2000},
     doi = {10.4064/fm-163-2-163-176},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-163-176/}
}
TY  - JOUR
AU  - Alan Dow
AU  - Klaas Pieter Hart
TI  - The measure algebra does not always embed
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 163
EP  - 176
VL  - 163
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-163-176/
DO  - 10.4064/fm-163-2-163-176
LA  - en
ID  - 10_4064_fm_163_2_163_176
ER  - 
%0 Journal Article
%A Alan Dow
%A Klaas Pieter Hart
%T The measure algebra does not always embed
%J Fundamenta Mathematicae
%D 2000
%P 163-176
%V 163
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-163-176/
%R 10.4064/fm-163-2-163-176
%G en
%F 10_4064_fm_163_2_163_176
Alan Dow; Klaas Pieter Hart. The measure algebra does not always embed. Fundamenta Mathematicae, Tome 163 (2000) no. 2, pp. 163-176. doi: 10.4064/fm-163-2-163-176

Cité par Sources :