The measure algebra does not always embed
Fundamenta Mathematicae, Tome 163 (2000) no. 2, pp. 163-176.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The Open Colouring Axiom implies that the measure algebra cannot be embedded into P(ℕ)/fin. We also discuss errors in previous results on the embeddability of the measure algebra.
DOI : 10.4064/fm-163-2-163-176
Keywords: measure algebra, embedding, Open Colouring Axiom, P(ℕ)/fin

Alan Dow 1 ; Klaas Pieter Hart 1

1
@article{10_4064_fm_163_2_163_176,
     author = {Alan Dow and Klaas Pieter Hart},
     title = {The measure algebra does not always embed},
     journal = {Fundamenta Mathematicae},
     pages = {163--176},
     publisher = {mathdoc},
     volume = {163},
     number = {2},
     year = {2000},
     doi = {10.4064/fm-163-2-163-176},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-163-176/}
}
TY  - JOUR
AU  - Alan Dow
AU  - Klaas Pieter Hart
TI  - The measure algebra does not always embed
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 163
EP  - 176
VL  - 163
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-163-176/
DO  - 10.4064/fm-163-2-163-176
LA  - en
ID  - 10_4064_fm_163_2_163_176
ER  - 
%0 Journal Article
%A Alan Dow
%A Klaas Pieter Hart
%T The measure algebra does not always embed
%J Fundamenta Mathematicae
%D 2000
%P 163-176
%V 163
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-163-176/
%R 10.4064/fm-163-2-163-176
%G en
%F 10_4064_fm_163_2_163_176
Alan Dow; Klaas Pieter Hart. The measure algebra does not always embed. Fundamenta Mathematicae, Tome 163 (2000) no. 2, pp. 163-176. doi : 10.4064/fm-163-2-163-176. http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-163-176/

Cité par Sources :