Countable Toronto spaces
Fundamenta Mathematicae, Tome 163 (2000) no. 2, pp. 143-162
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A space X is called an α-Toronto space if X is scattered of Cantor-Bendixson rank α and is homeomorphic to each of its subspaces of the same rank. We answer a question of Steprāns by constructing a countable α-Toronto space for each α ≤ ω. We also construct consistent examples of countable α-Toronto spaces for each $α ω_1$.
Affiliations des auteurs :
Gary Gruenhage 1 ; J. Tach Moore 1
@article{10_4064_fm_163_2_143_162,
author = {Gary Gruenhage and J. Tach Moore},
title = {Countable {Toronto} spaces},
journal = {Fundamenta Mathematicae},
pages = {143--162},
year = {2000},
volume = {163},
number = {2},
doi = {10.4064/fm-163-2-143-162},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-143-162/}
}
Gary Gruenhage; J. Tach Moore. Countable Toronto spaces. Fundamenta Mathematicae, Tome 163 (2000) no. 2, pp. 143-162. doi: 10.4064/fm-163-2-143-162
Cité par Sources :