Countable Toronto spaces
Fundamenta Mathematicae, Tome 163 (2000) no. 2, pp. 143-162.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A space X is called an α-Toronto space if X is scattered of Cantor-Bendixson rank α and is homeomorphic to each of its subspaces of the same rank. We answer a question of Steprāns by constructing a countable α-Toronto space for each α ≤ ω. We also construct consistent examples of countable α-Toronto spaces for each $α ω_1$.
DOI : 10.4064/fm-163-2-143-162

Gary Gruenhage 1 ; J. Tach Moore 1

1
@article{10_4064_fm_163_2_143_162,
     author = {Gary  Gruenhage and J. Tach Moore},
     title = {Countable {Toronto} spaces},
     journal = {Fundamenta Mathematicae},
     pages = {143--162},
     publisher = {mathdoc},
     volume = {163},
     number = {2},
     year = {2000},
     doi = {10.4064/fm-163-2-143-162},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-143-162/}
}
TY  - JOUR
AU  - Gary  Gruenhage
AU  - J. Tach Moore
TI  - Countable Toronto spaces
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 143
EP  - 162
VL  - 163
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-143-162/
DO  - 10.4064/fm-163-2-143-162
LA  - en
ID  - 10_4064_fm_163_2_143_162
ER  - 
%0 Journal Article
%A Gary  Gruenhage
%A J. Tach Moore
%T Countable Toronto spaces
%J Fundamenta Mathematicae
%D 2000
%P 143-162
%V 163
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-143-162/
%R 10.4064/fm-163-2-143-162
%G en
%F 10_4064_fm_163_2_143_162
Gary  Gruenhage; J. Tach Moore. Countable Toronto spaces. Fundamenta Mathematicae, Tome 163 (2000) no. 2, pp. 143-162. doi : 10.4064/fm-163-2-143-162. http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-143-162/

Cité par Sources :