On ergodicity of some cylinder flows
Fundamenta Mathematicae, Tome 163 (2000) no. 2, pp. 117-130.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study ergodicity of cylinder flows of the form   $T_f:{\mathbb T}×ℝ → {\mathbb T}×ℝ$, $T_f(x,y) = (x+α,y+f(x))$, where $f:{\mathbb T} → ℝ$ is a measurable cocycle with zero integral. We show a new class of smooth ergodic cocycles. Let k be a natural number and let f be a function such that $D^kf$ is piecewise absolutely continuous (but not continuous) with zero sum of jumps. We show that if the points of discontinuity of $D^kf$ have some good properties, then $T_f$ is ergodic. Moreover, there exists $ε_f > 0$ such that if $v:{\mathbb T}→ℝ$ is a function with zero integral such that $D^kv$ is of bounded variation with $Var(D^kv) ε_f$, then $T_{f+v}$ is ergodic.
DOI : 10.4064/fm-163-2-117-130

Krzysztof Frączek 1

1
@article{10_4064_fm_163_2_117_130,
     author = {Krzysztof  Fr\k{a}czek},
     title = {On ergodicity of some cylinder flows},
     journal = {Fundamenta Mathematicae},
     pages = {117--130},
     publisher = {mathdoc},
     volume = {163},
     number = {2},
     year = {2000},
     doi = {10.4064/fm-163-2-117-130},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-117-130/}
}
TY  - JOUR
AU  - Krzysztof  Frączek
TI  - On ergodicity of some cylinder flows
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 117
EP  - 130
VL  - 163
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-117-130/
DO  - 10.4064/fm-163-2-117-130
LA  - en
ID  - 10_4064_fm_163_2_117_130
ER  - 
%0 Journal Article
%A Krzysztof  Frączek
%T On ergodicity of some cylinder flows
%J Fundamenta Mathematicae
%D 2000
%P 117-130
%V 163
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-117-130/
%R 10.4064/fm-163-2-117-130
%G en
%F 10_4064_fm_163_2_117_130
Krzysztof  Frączek. On ergodicity of some cylinder flows. Fundamenta Mathematicae, Tome 163 (2000) no. 2, pp. 117-130. doi : 10.4064/fm-163-2-117-130. http://geodesic.mathdoc.fr/articles/10.4064/fm-163-2-117-130/

Cité par Sources :