Chains and antichains in Boolean algebras
Fundamenta Mathematicae, Tome 163 (2000) no. 1, pp. 55-76
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We give an affirmative answer to problem DJ from Fremlin's list [8] which asks whether $MA_{ω_1}$ implies that every uncountable Boolean algebra has an uncountable set of pairwise incomparable elements.
@article{10_4064_fm_163_1_55_76,
author = {M. Losada and S. Todor\v{c}evi\'c},
title = {Chains and antichains in {Boolean} algebras},
journal = {Fundamenta Mathematicae},
pages = {55--76},
year = {2000},
volume = {163},
number = {1},
doi = {10.4064/fm-163-1-55-76},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-163-1-55-76/}
}
M. Losada; S. Todorčević. Chains and antichains in Boolean algebras. Fundamenta Mathematicae, Tome 163 (2000) no. 1, pp. 55-76. doi: 10.4064/fm-163-1-55-76
Cité par Sources :