Chains and antichains in Boolean algebras
Fundamenta Mathematicae, Tome 163 (2000) no. 1, pp. 55-76.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give an affirmative answer to problem DJ from Fremlin's list [8] which asks whether $MA_{ω_1}$ implies that every uncountable Boolean algebra has an uncountable set of pairwise incomparable elements.
DOI : 10.4064/fm-163-1-55-76

M. Losada 1 ; S. Todorčević 1

1
@article{10_4064_fm_163_1_55_76,
     author = {M. Losada and S. Todor\v{c}evi\'c},
     title = {Chains and antichains in {Boolean} algebras},
     journal = {Fundamenta Mathematicae},
     pages = {55--76},
     publisher = {mathdoc},
     volume = {163},
     number = {1},
     year = {2000},
     doi = {10.4064/fm-163-1-55-76},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-163-1-55-76/}
}
TY  - JOUR
AU  - M. Losada
AU  - S. Todorčević
TI  - Chains and antichains in Boolean algebras
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 55
EP  - 76
VL  - 163
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-163-1-55-76/
DO  - 10.4064/fm-163-1-55-76
LA  - fr
ID  - 10_4064_fm_163_1_55_76
ER  - 
%0 Journal Article
%A M. Losada
%A S. Todorčević
%T Chains and antichains in Boolean algebras
%J Fundamenta Mathematicae
%D 2000
%P 55-76
%V 163
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-163-1-55-76/
%R 10.4064/fm-163-1-55-76
%G fr
%F 10_4064_fm_163_1_55_76
M. Losada; S. Todorčević. Chains and antichains in Boolean algebras. Fundamenta Mathematicae, Tome 163 (2000) no. 1, pp. 55-76. doi : 10.4064/fm-163-1-55-76. http://geodesic.mathdoc.fr/articles/10.4064/fm-163-1-55-76/

Cité par Sources :