Misiurewicz maps unfold generically (even if they are critically non-finite)
Fundamenta Mathematicae, Tome 163 (2000) no. 1, pp. 39-54.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that in normalized families of polynomial or rational maps, Misiurewicz maps (critically finite or infinite) unfold generically. For example, if $f_{λ_0}$ is critically finite with non-degenerate critical point $c_1(λ_0),...,c_n(λ_0)$ such that $f_{λ_0}^{k_i}(c_i(λ_0)) = p_i(λ_0)$ are hyperbolic periodic points for i = 1,...,n, then  $$λ ↦ (f_λ^{k_1}(c_1(λ))-p_1(λ),..., f_λ^{k_{d-2}}(c_{d-2}(λ))-p_{d-2}(λ))$$ is a local diffeomorphism for λ near $λ_0$. For quadratic families this result was proved previously in {DH} using entirely different methods.
DOI : 10.4064/fm-163-1-39-54

Sebastian van Strien 1

1
@article{10_4064_fm_163_1_39_54,
     author = {Sebastian van Strien},
     title = {Misiurewicz maps unfold generically (even if they are critically non-finite)},
     journal = {Fundamenta Mathematicae},
     pages = {39--54},
     publisher = {mathdoc},
     volume = {163},
     number = {1},
     year = {2000},
     doi = {10.4064/fm-163-1-39-54},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-163-1-39-54/}
}
TY  - JOUR
AU  - Sebastian van Strien
TI  - Misiurewicz maps unfold generically (even if they are critically non-finite)
JO  - Fundamenta Mathematicae
PY  - 2000
SP  - 39
EP  - 54
VL  - 163
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-163-1-39-54/
DO  - 10.4064/fm-163-1-39-54
LA  - en
ID  - 10_4064_fm_163_1_39_54
ER  - 
%0 Journal Article
%A Sebastian van Strien
%T Misiurewicz maps unfold generically (even if they are critically non-finite)
%J Fundamenta Mathematicae
%D 2000
%P 39-54
%V 163
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-163-1-39-54/
%R 10.4064/fm-163-1-39-54
%G en
%F 10_4064_fm_163_1_39_54
Sebastian van Strien. Misiurewicz maps unfold generically (even if they are critically non-finite). Fundamenta Mathematicae, Tome 163 (2000) no. 1, pp. 39-54. doi : 10.4064/fm-163-1-39-54. http://geodesic.mathdoc.fr/articles/10.4064/fm-163-1-39-54/

Cité par Sources :