If it looks and smells like the reals...
Fundamenta Mathematicae, Tome 163 (2000) no. 1, pp. 1-11
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Given a topological space 〈X,T〉 ∈ M, an elementary submodel of set theory, we define $X_M$ to be X ∩ M with topology generated by {U ∩ M:U ∈ T ∩ M}. We prove that if $X_M$ is homeomorphic to ℝ, then $X = X_M$. The same holds for arbitrary locally compact uncountable separable metric spaces, but is independent of ZFC if "local compactness" is omitted.
Keywords:
elementary submodel, real line, locally compact separable metric space
Affiliations des auteurs :
Franklin Tall 1
@article{10_4064_fm_163_1_1_11,
author = {Franklin Tall},
title = {If it looks and smells like the reals...},
journal = {Fundamenta Mathematicae},
pages = {1--11},
year = {2000},
volume = {163},
number = {1},
doi = {10.4064/fm-163-1-1-11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-163-1-1-11/}
}
Franklin Tall. If it looks and smells like the reals.... Fundamenta Mathematicae, Tome 163 (2000) no. 1, pp. 1-11. doi: 10.4064/fm-163-1-1-11
Cité par Sources :