A generalization of Zeeman’s family
Fundamenta Mathematicae, Tome 162 (1999) no. 3, pp. 277-286.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

E. C. Zeeman [2] described the behaviour of the iterates of the difference equation $x_{n+1} = R(x_n,x_{n-1},...,x_{n-k})/Q(x_n,x_{n-1},..., x_{n-k})$, n ≥ k, R,Q polynomials in the case $k = 1, Q = x_{n-1}$ and $R = x_n+α$, $x_1,x_2$ positive, α nonnegative. We generalize his results as well as those of Beukers and Cushman on the existence of an invariant measure in the case when R,Q are affine and k = 1. We prove that the totally invariant set remains residual when the coefficients vary.
DOI : 10.4064/fm-162-3-277-286

Michał Sierakowski 1

1
@article{10_4064_fm_162_3_277_286,
     author = {Micha{\l} Sierakowski},
     title = {A generalization of {Zeeman{\textquoteright}s} family},
     journal = {Fundamenta Mathematicae},
     pages = {277--286},
     publisher = {mathdoc},
     volume = {162},
     number = {3},
     year = {1999},
     doi = {10.4064/fm-162-3-277-286},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-162-3-277-286/}
}
TY  - JOUR
AU  - Michał Sierakowski
TI  - A generalization of Zeeman’s family
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 277
EP  - 286
VL  - 162
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-162-3-277-286/
DO  - 10.4064/fm-162-3-277-286
LA  - en
ID  - 10_4064_fm_162_3_277_286
ER  - 
%0 Journal Article
%A Michał Sierakowski
%T A generalization of Zeeman’s family
%J Fundamenta Mathematicae
%D 1999
%P 277-286
%V 162
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-162-3-277-286/
%R 10.4064/fm-162-3-277-286
%G en
%F 10_4064_fm_162_3_277_286
Michał Sierakowski. A generalization of Zeeman’s family. Fundamenta Mathematicae, Tome 162 (1999) no. 3, pp. 277-286. doi : 10.4064/fm-162-3-277-286. http://geodesic.mathdoc.fr/articles/10.4064/fm-162-3-277-286/

Cité par Sources :