A generalization of Zeeman’s family
Fundamenta Mathematicae, Tome 162 (1999) no. 3, pp. 277-286
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
E. C. Zeeman [2] described the behaviour of the iterates of the difference equation $x_{n+1} = R(x_n,x_{n-1},...,x_{n-k})/Q(x_n,x_{n-1},..., x_{n-k})$, n ≥ k, R,Q polynomials in the case $k = 1, Q = x_{n-1}$ and $R = x_n+α$, $x_1,x_2$ positive, α nonnegative. We generalize his results as well as those of Beukers and Cushman on the existence of an invariant measure in the case when R,Q are affine and k = 1. We prove that the totally invariant set remains residual when the coefficients vary.
@article{10_4064_fm_162_3_277_286,
author = {Micha{\l} Sierakowski},
title = {A generalization of {Zeeman{\textquoteright}s} family},
journal = {Fundamenta Mathematicae},
pages = {277--286},
year = {1999},
volume = {162},
number = {3},
doi = {10.4064/fm-162-3-277-286},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-162-3-277-286/}
}
Michał Sierakowski. A generalization of Zeeman’s family. Fundamenta Mathematicae, Tome 162 (1999) no. 3, pp. 277-286. doi: 10.4064/fm-162-3-277-286
Cité par Sources :