Homotopy orbits of free loop spaces
Fundamenta Mathematicae, Tome 162 (1999) no. 3, pp. 251-275.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let X be a space with free loop space ΛX and mod two cohomology R = H*X. We construct functors $Ω_λ(R)$ and ℓ(R) together with algebra homomorphisms $e: Ω_λ(R) → H*(ΛX)$ and $ψ: ℓ(R) → H*(ES^1×_{S^1}ΛX)$. When X is 1-connected and R is a symmetric algebra we show that these are isomorphisms.
DOI : 10.4064/fm-162-3-251-275

Marcel Bökstedt 1 ; Iver Ottosen 1

1
@article{10_4064_fm_162_3_251_275,
     author = {Marcel B\"okstedt and Iver Ottosen},
     title = {Homotopy orbits of free loop spaces},
     journal = {Fundamenta Mathematicae},
     pages = {251--275},
     publisher = {mathdoc},
     volume = {162},
     number = {3},
     year = {1999},
     doi = {10.4064/fm-162-3-251-275},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-162-3-251-275/}
}
TY  - JOUR
AU  - Marcel Bökstedt
AU  - Iver Ottosen
TI  - Homotopy orbits of free loop spaces
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 251
EP  - 275
VL  - 162
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-162-3-251-275/
DO  - 10.4064/fm-162-3-251-275
LA  - en
ID  - 10_4064_fm_162_3_251_275
ER  - 
%0 Journal Article
%A Marcel Bökstedt
%A Iver Ottosen
%T Homotopy orbits of free loop spaces
%J Fundamenta Mathematicae
%D 1999
%P 251-275
%V 162
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-162-3-251-275/
%R 10.4064/fm-162-3-251-275
%G en
%F 10_4064_fm_162_3_251_275
Marcel Bökstedt; Iver Ottosen. Homotopy orbits of free loop spaces. Fundamenta Mathematicae, Tome 162 (1999) no. 3, pp. 251-275. doi : 10.4064/fm-162-3-251-275. http://geodesic.mathdoc.fr/articles/10.4064/fm-162-3-251-275/

Cité par Sources :