Atomic compactness for reflexive graphs
Fundamenta Mathematicae, Tome 162 (1999) no. 2, pp. 99-117.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A first order structure $\mathfrak M$ with universe M is atomic compact if every system of atomic formulas with parameters in $M$ is satisfiable in $\mathfrak M$ provided each of its finite subsystems is. We consider atomic compactness for the class of reflexive (symmetric) graphs. In particular, we investigate the extent to which "sparse" graphs (i.e. graphs with "few" vertices of "high" degree) are compact with respect to systems of atomic formulas with "few" unknowns, on the one hand, and are pure restrictions of their Stone-Čech compactifications, on the other hand.
DOI : 10.4064/fm-162-2-99-117

Christian Delhommé 1

1
@article{10_4064_fm_162_2_99_117,
     author = {Christian Delhomm\'e},
     title = {Atomic compactness for reflexive graphs},
     journal = {Fundamenta Mathematicae},
     pages = {99--117},
     publisher = {mathdoc},
     volume = {162},
     number = {2},
     year = {1999},
     doi = {10.4064/fm-162-2-99-117},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-99-117/}
}
TY  - JOUR
AU  - Christian Delhommé
TI  - Atomic compactness for reflexive graphs
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 99
EP  - 117
VL  - 162
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-99-117/
DO  - 10.4064/fm-162-2-99-117
LA  - en
ID  - 10_4064_fm_162_2_99_117
ER  - 
%0 Journal Article
%A Christian Delhommé
%T Atomic compactness for reflexive graphs
%J Fundamenta Mathematicae
%D 1999
%P 99-117
%V 162
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-99-117/
%R 10.4064/fm-162-2-99-117
%G en
%F 10_4064_fm_162_2_99_117
Christian Delhommé. Atomic compactness for reflexive graphs. Fundamenta Mathematicae, Tome 162 (1999) no. 2, pp. 99-117. doi : 10.4064/fm-162-2-99-117. http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-99-117/

Cité par Sources :