Continuous images and other topological properties of Valdivia compacta
Fundamenta Mathematicae, Tome 162 (1999) no. 2, pp. 181-192.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study topological properties of Valdivia compact spaces. We prove in particular that a compact Hausdorff space K is Corson provided each continuous image of K is a Valdivia compactum. This answers a question of M. Valdivia (1997). We also prove that the class of Valdivia compacta is stable with respect to arbitrary products and we give a generalization of the fact that Corson compacta are angelic.
DOI : 10.4064/fm-162-2-181-192
Keywords: Corson compact space, Valdivia compact space, countably compact space, Fréchet-Urysohn space, continuous image

Ondřej Kalenda 1

1
@article{10_4064_fm_162_2_181_192,
     author = {Ond\v{r}ej Kalenda},
     title = {Continuous images and other topological properties of {Valdivia} compacta},
     journal = {Fundamenta Mathematicae},
     pages = {181--192},
     publisher = {mathdoc},
     volume = {162},
     number = {2},
     year = {1999},
     doi = {10.4064/fm-162-2-181-192},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-181-192/}
}
TY  - JOUR
AU  - Ondřej Kalenda
TI  - Continuous images and other topological properties of Valdivia compacta
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 181
EP  - 192
VL  - 162
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-181-192/
DO  - 10.4064/fm-162-2-181-192
LA  - en
ID  - 10_4064_fm_162_2_181_192
ER  - 
%0 Journal Article
%A Ondřej Kalenda
%T Continuous images and other topological properties of Valdivia compacta
%J Fundamenta Mathematicae
%D 1999
%P 181-192
%V 162
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-181-192/
%R 10.4064/fm-162-2-181-192
%G en
%F 10_4064_fm_162_2_181_192
Ondřej Kalenda. Continuous images and other topological properties of Valdivia compacta. Fundamenta Mathematicae, Tome 162 (1999) no. 2, pp. 181-192. doi : 10.4064/fm-162-2-181-192. http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-181-192/

Cité par Sources :