Minimal fixed point sets of relative maps
Fundamenta Mathematicae, Tome 162 (1999) no. 2, pp. 163-180.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let f: (X,A) → (X,A) be a self map of a pair of compact polyhedra. It is known that f has at least N(f;X,A) fixed points on X. We give a sufficient and necessary condition for a finite set P (|P| = N(f;X,A)) to be the fixed point set of a map in the relative homotopy class of the given map f. As an application, a new lower bound for the number of fixed points of f on Cl(X-A) is given.
DOI : 10.4064/fm-162-2-163-180
Keywords: fixed point class, minimal fixed point set, relative Nielsen number, bipartite graph, matching

Xue Zhao 1

1
@article{10_4064_fm_162_2_163_180,
     author = {Xue Zhao},
     title = {Minimal fixed point sets of relative maps},
     journal = {Fundamenta Mathematicae},
     pages = {163--180},
     publisher = {mathdoc},
     volume = {162},
     number = {2},
     year = {1999},
     doi = {10.4064/fm-162-2-163-180},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-163-180/}
}
TY  - JOUR
AU  - Xue Zhao
TI  - Minimal fixed point sets of relative maps
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 163
EP  - 180
VL  - 162
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-163-180/
DO  - 10.4064/fm-162-2-163-180
LA  - en
ID  - 10_4064_fm_162_2_163_180
ER  - 
%0 Journal Article
%A Xue Zhao
%T Minimal fixed point sets of relative maps
%J Fundamenta Mathematicae
%D 1999
%P 163-180
%V 162
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-163-180/
%R 10.4064/fm-162-2-163-180
%G en
%F 10_4064_fm_162_2_163_180
Xue Zhao. Minimal fixed point sets of relative maps. Fundamenta Mathematicae, Tome 162 (1999) no. 2, pp. 163-180. doi : 10.4064/fm-162-2-163-180. http://geodesic.mathdoc.fr/articles/10.4064/fm-162-2-163-180/

Cité par Sources :